1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
#
# Author: Joris Vankerschaver 2013
#
from __future__ import division, print_function, absolute_import
from scipy.misc import doccer
from functools import wraps
import numpy as np
import scipy.linalg
__all__ = ['multivariate_normal']
_LOG_2PI = np.log(2 * np.pi)
def _process_parameters(dim, mean, cov):
"""
Infer dimensionality from mean or covariance matrix, ensure that
mean and covariance are full vector resp. matrix.
"""
# Try to infer dimensionality
if dim is None:
if mean is None:
if cov is None:
dim = 1
else:
cov = np.asarray(cov, dtype=float)
if cov.ndim < 2:
dim = 1
else:
dim = cov.shape[0]
else:
mean = np.asarray(mean, dtype=float)
dim = mean.size
else:
if not np.isscalar(dim):
raise ValueError("Dimension of random variable must be a scalar.")
# Check input sizes and return full arrays for mean and cov if necessary
if mean is None:
mean = np.zeros(dim)
mean = np.asarray(mean, dtype=float)
if cov is None:
cov = 1.0
cov = np.asarray(cov, dtype=float)
if dim == 1:
mean.shape = (1,)
cov.shape = (1, 1)
if mean.ndim != 1 or mean.shape[0] != dim:
raise ValueError("Array 'mean' must be vector of length %d." % dim)
if cov.ndim == 0:
cov = cov * np.eye(dim)
elif cov.ndim == 1:
cov = np.diag(cov)
else:
if cov.shape != (dim, dim):
raise ValueError("Array 'cov' must be at most two-dimensional,"
" but cov.ndim = %d" % cov.ndim)
return dim, mean, cov
def _process_quantiles(x, dim):
"""
Adjust quantiles array so that last axis labels the components of
each data point.
"""
x = np.asarray(x, dtype=float)
if x.ndim == 0:
x = x[np.newaxis]
elif x.ndim == 1:
if dim == 1:
x = x[:, np.newaxis]
else:
x = x[np.newaxis, :]
return x
def _squeeze_output(out):
"""
Remove single-dimensional entries from array and convert to scalar,
if necessary.
"""
out = out.squeeze()
if out.ndim == 0:
out = out[()]
return out
def _pinv_1d(v, eps=1e-5):
"""
A helper function for computing the pseudoinverse.
Parameters
----------
v : iterable of numbers
This may be thought of as a vector of eigenvalues or singular values.
eps : float
Elements of v smaller than eps are considered negligible.
Returns
-------
v_pinv : 1d float ndarray
A vector of pseudo-inverted numbers.
"""
return np.array([0 if abs(x) < eps else 1/x for x in v], dtype=float)
def _psd_pinv_decomposed_log_pdet(mat, cond=None, rcond=None,
lower=True, check_finite=True):
"""
Compute a decomposition of the pseudo-inverse and the logarithm of
the pseudo-determinant of a symmetric positive semi-definite
matrix.
The pseudo-determinant of a matrix is defined as the product of
the non-zero eigenvalues, and coincides with the usual determinant
for a full matrix.
Parameters
----------
mat : array_like
Input array of shape (`m`, `n`)
cond, rcond : float or None
Cutoff for 'small' singular values.
Eigenvalues smaller than ``rcond*largest_eigenvalue``
are considered zero.
If None or -1, suitable machine precision is used.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of `mat`. (Default: lower)
check_finite : boolean, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
M : array_like
The pseudo-inverse of the input matrix is np.dot(M, M.T).
log_pdet : float
Logarithm of the pseudo-determinant of the matrix.
"""
# Compute the symmetric eigendecomposition.
# The input covariance matrix is required to be real symmetric
# and positive semidefinite which implies that its eigenvalues
# are all real and non-negative,
# but clip them anyway to avoid numerical issues.
# TODO: the code to set cond/rcond is identical to that in
# scipy.linalg.{pinvh, pinv2} and if/when this function is subsumed
# into scipy.linalg it should probably be shared between all of
# these routines.
# Note that eigh takes care of array conversion, chkfinite,
# and assertion that the matrix is square.
s, u = scipy.linalg.eigh(mat, lower=lower, check_finite=check_finite)
if rcond is not None:
cond = rcond
if cond in [None, -1]:
t = u.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
cond = factor[t] * np.finfo(t).eps
eps = cond * np.max(abs(s))
if np.min(s) < -eps:
raise ValueError('the covariance matrix must be positive semidefinite')
s_pinv = _pinv_1d(s, eps)
U = np.multiply(u, np.sqrt(s_pinv))
log_pdet = np.sum(np.log(s[s > eps]))
return U, log_pdet
_doc_default_callparams = \
"""mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
"""
_doc_callparams_note = \
"""Setting the parameter `mean` to `None` is equivalent to having `mean`
be the zero-vector. The parameter `cov` can be a scalar, in which case
the covariance matrix is the identity times that value, a vector of
diagonal entries for the covariance matrix, or a two-dimensional
array_like.
"""
_doc_frozen_callparams = ""
_doc_frozen_callparams_note = \
"""See class definition for a detailed description of parameters."""
docdict_params = {
'_doc_default_callparams': _doc_default_callparams,
'_doc_callparams_note': _doc_callparams_note
}
docdict_noparams = {
'_doc_default_callparams': _doc_frozen_callparams,
'_doc_callparams_note': _doc_frozen_callparams_note
}
class multivariate_normal_gen(object):
r"""
A multivariate normal random variable.
The `mean` keyword specifies the mean. The `cov` keyword specifies the
covariance matrix.
.. versionadded:: 0.14.0
Methods
-------
pdf(x, mean=None, cov=1)
Probability density function.
logpdf(x, mean=None, cov=1)
Log of the probability density function.
rvs(mean=None, cov=1)
Draw random samples from a multivariate normal distribution.
entropy()
Compute the differential entropy of the multivariate normal.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a "frozen" multivariate normal
random variable:
rv = multivariate_normal(mean=None, scale=1)
- Frozen object with the same methods but holding the given
mean and covariance fixed.
Notes
-----
%(_doc_callparams_note)s
The covariance matrix `cov` must be a (symmetric) positive
semi-definite matrix. The determinant and inverse of `cov` are computed
as the pseudo-determinant and pseudo-inverse, respectively, so
that `cov` does not need to have full rank.
The probability density function for `multivariate_normal` is
.. math::
f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
and :math:`k` is the dimension of the space where :math:`x` takes values.
Examples
--------
>>> from scipy.stats import multivariate_normal
>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> plt.plot(x, y)
The input quantiles can be any shape of array, as long as the last
axis labels the components. This allows us for instance to
display the frozen pdf for a non-isotropic random variable in 2D as
follows:
>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.empty(x.shape + (2,))
>>> pos[:, :, 0] = x; pos[:, :, 1] = y
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> plt.contourf(x, y, rv.pdf(pos))
"""
def __init__(self):
self.__doc__ = doccer.docformat(self.__doc__, docdict_params)
def __call__(self, mean=None, cov=1):
"""
Create a frozen multivariate normal distribution.
See `multivariate_normal_frozen` for more information.
"""
return multivariate_normal_frozen(mean, cov)
def _logpdf(self, x, mean, prec_U, log_det_cov):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
mean : ndarray
Mean of the distribution
prec_U : ndarray
A decomposition such that np.dot(prec_U, prec_U.T)
is the precision matrix, i.e. inverse of the covariance matrix.
log_det_cov : float
Logarithm of the determinant of the covariance matrix
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
dim = x.shape[-1]
dev = x - mean
maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
return -0.5 * (dim * _LOG_2PI + log_det_cov + maha)
def logpdf(self, x, mean, cov):
"""
Log of the multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
prec_U, log_det_cov = _psd_pinv_decomposed_log_pdet(cov)
out = self._logpdf(x, mean, prec_U, log_det_cov)
return _squeeze_output(out)
def pdf(self, x, mean, cov):
"""
Multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
pdf : ndarray
Probability density function evaluated at `x`
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
prec_U, log_det_cov = _psd_pinv_decomposed_log_pdet(cov)
out = np.exp(self._logpdf(x, mean, prec_U, log_det_cov))
return _squeeze_output(out)
def rvs(self, mean=None, cov=1, size=1):
"""
Draw random samples from a multivariate normal distribution.
Parameters
----------
%(_doc_default_callparams)s
size : integer, optional
Number of samples to draw (default 1).
Notes
-----
%(_doc_callparams_note)s
Returns
-------
rvs : ndarray or scalar
Random variates of size (`size`, `N`), where `N` is the
dimension of the random variable.
"""
dim, mean, cov = _process_parameters(None, mean, cov)
out = np.random.multivariate_normal(mean, cov, size)
return _squeeze_output(out)
def entropy(self, mean=None, cov=1):
"""
Compute the differential entropy of the multivariate normal.
Parameters
----------
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
"""
dim, mean, cov = _process_parameters(None, mean, cov)
return 1/2 * np.log(np.linalg.det(2 * np.pi * np.e * cov))
multivariate_normal = multivariate_normal_gen()
class multivariate_normal_frozen(object):
def __init__(self, mean=None, cov=1):
"""
Create a frozen multivariate normal distribution.
Parameters
----------
mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
Examples
--------
When called with the default parameters, this will create a 1D random
variable with mean 0 and covariance 1:
>>> from scipy.stats import multivariate_normal
>>> r = multivariate_normal()
>>> r.mean
array([ 0.])
>>> r.cov
array([[1.]])
"""
self.dim, self.mean, self.cov = _process_parameters(None, mean, cov)
self.prec_U, self._log_det_cov = _psd_pinv_decomposed_log_pdet(self.cov)
self._mnorm = multivariate_normal_gen()
def logpdf(self, x):
x = _process_quantiles(x, self.dim)
out = self._mnorm._logpdf(x, self.mean, self.prec_U, self._log_det_cov)
return _squeeze_output(out)
def pdf(self, x):
return np.exp(self.logpdf(x))
def rvs(self, size=1):
return self._mnorm.rvs(self.mean, self.cov, size)
def entropy(self):
"""
Computes the differential entropy of the multivariate normal.
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
"""
return 1/2 * (self.dim * (_LOG_2PI + 1) + self._log_det_cov)
# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs']:
method = multivariate_normal_gen.__dict__[name]
method_frozen = multivariate_normal_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(method.__doc__, docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, docdict_params)
|