1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
from __future__ import division, print_function, absolute_import
import numpy.testing as npt
import numpy as np
from scipy.lib.six import xrange
from scipy import stats
from common_tests import (check_normalization, check_moment, check_mean_expect,
check_var_expect, check_skew_expect, check_kurt_expect,
check_entropy, check_private_entropy, check_edge_support,
check_named_args)
from scipy.stats._distr_params import distdiscrete
knf = npt.dec.knownfailureif
def test_discrete_basic():
for distname, arg in distdiscrete:
distfn = getattr(stats, distname)
np.random.seed(9765456)
rvs = distfn.rvs(size=2000, *arg)
supp = np.unique(rvs)
m, v = distfn.stats(*arg)
yield check_cdf_ppf, distfn, arg, supp, distname + ' cdf_ppf'
yield check_pmf_cdf, distfn, arg, distname
yield check_oth, distfn, arg, supp, distname + ' oth'
yield check_edge_support, distfn, arg
alpha = 0.01
yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
distname + ' chisquare'
seen = set()
for distname, arg in distdiscrete:
if distname in seen:
continue
seen.add(distname)
distfn = getattr(stats,distname)
locscale_defaults = (0,)
meths = [distfn.pmf, distfn.logpmf, distfn.cdf, distfn.logcdf,
distfn.logsf]
# make sure arguments are within support
spec_k = {'randint': 11, 'hypergeom': 4, 'bernoulli': 0, }
k = spec_k.get(distname, 1)
yield check_named_args, distfn, k, arg, locscale_defaults, meths
yield check_scale_docstring, distfn
# Entropy
yield check_entropy, distfn, arg, distname
if distfn.__class__._entropy != stats.rv_discrete._entropy:
yield check_private_entropy, distfn, arg, stats.rv_discrete
def test_moments():
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
m, v, s, k = distfn.stats(*arg, moments='mvsk')
yield check_normalization, distfn, arg, distname
# compare `stats` and `moment` methods
yield check_moment, distfn, arg, m, v, distname
yield check_mean_expect, distfn, arg, m, distname
yield check_var_expect, distfn, arg, m, v, distname
yield check_skew_expect, distfn, arg, m, v, s, distname
cond = distname in ['zipf']
msg = distname + ' fails kurtosis'
yield knf(cond, msg)(check_kurt_expect), distfn, arg, m, v, k, distname
# frozen distr moments
yield check_moment_frozen, distfn, arg, m, 1
yield check_moment_frozen, distfn, arg, v+m*m, 2
def check_cdf_ppf(distfn, arg, supp, msg):
# cdf is a step function, and ppf(q) = min{k : cdf(k) >= q, k integer}
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg), *arg),
supp, msg + '-roundtrip')
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg) - 1e-8, *arg),
supp, msg + '-roundtrip')
supp1 = supp[supp < distfn.b]
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp1, *arg) + 1e-8, *arg),
supp1 + distfn.inc, msg + 'ppf-cdf-next')
# -1e-8 could cause an error if pmf < 1e-8
def check_pmf_cdf(distfn, arg, distname):
startind = np.int(distfn.ppf(0.01, *arg) - 1)
index = list(range(startind, startind + 10))
cdfs, pmfs_cum = distfn.cdf(index,*arg), distfn.pmf(index, *arg).cumsum()
atol, rtol = 1e-10, 1e-10
if distname == 'skellam': # ncx2 accuracy
atol, rtol = 1e-5, 1e-5
npt.assert_allclose(cdfs - cdfs[0], pmfs_cum - pmfs_cum[0],
atol=atol, rtol=rtol)
def check_moment_frozen(distfn, arg, m, k):
npt.assert_allclose(distfn(*arg).moment(k), m,
atol=1e-10, rtol=1e-10)
def check_oth(distfn, arg, supp, msg):
# checking other methods of distfn
npt.assert_allclose(distfn.sf(supp, *arg), 1. - distfn.cdf(supp, *arg),
atol=1e-10, rtol=1e-10)
q = np.linspace(0.01, 0.99, 20)
npt.assert_allclose(distfn.isf(q, *arg), distfn.ppf(1. - q, *arg),
atol=1e-10, rtol=1e-10)
median_sf = distfn.isf(0.5, *arg)
npt.assert_(distfn.sf(median_sf - 1, *arg) > 0.5)
npt.assert_(distfn.cdf(median_sf + 1, *arg) > 0.5)
def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
"""Perform chisquare test for random sample of a discrete distribution
Parameters
----------
distname : string
name of distribution function
arg : sequence
parameters of distribution
alpha : float
significance level, threshold for p-value
Returns
-------
result : bool
0 if test passes, 1 if test fails
uses global variable debug for printing results
"""
n = len(rvs)
nsupp = 20
wsupp = 1.0/nsupp
# construct intervals with minimum mass 1/nsupp
# intervals are left-half-open as in a cdf difference
distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
last = 0
distsupp = [max(distfn.a, -1000)]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii,*arg)
if current - last >= wsupp-1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1-wsupp):
break
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1-last)
distsupp = np.array(distsupp)
distmass = np.array(distmass)
# convert intervals to right-half-open as required by histogram
histsupp = distsupp+1e-8
histsupp[0] = distfn.a
# find sample frequencies and perform chisquare test
freq,hsupp = np.histogram(rvs,histsupp)
cdfs = distfn.cdf(distsupp,*arg)
(chis,pval) = stats.chisquare(np.array(freq),n*distmass)
npt.assert_(pval > alpha, 'chisquare - test for %s'
' at arg = %s with pval = %s' % (msg,str(arg),str(pval)))
def check_scale_docstring(distfn):
if distfn.__doc__ is not None:
# Docstrings can be stripped if interpreter is run with -OO
npt.assert_('scale' not in distfn.__doc__)
if __name__ == "__main__":
npt.run_module_suite()
|