File: test_distributions.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (1907 lines) | stat: -rw-r--r-- 71,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
""" Test functions for stats module

"""
from __future__ import division, print_function, absolute_import

import warnings
import re
import sys

from numpy.testing import (TestCase, run_module_suite, assert_equal,
    assert_array_equal, assert_almost_equal, assert_array_almost_equal,
    assert_allclose, assert_, assert_raises, rand, dec)
from nose import SkipTest

import numpy
import numpy as np
from numpy import typecodes, array
from scipy.lib._version import NumpyVersion
from scipy import special
import scipy.stats as stats
from scipy.stats._distn_infrastructure import argsreduce
import scipy.stats.distributions

from scipy.special import xlogy


# python -OO strips docstrings
DOCSTRINGS_STRIPPED = sys.flags.optimize > 1


# Generate test cases to test cdf and distribution consistency.
# Note that this list does not include all distributions.
dists = ['uniform','norm','lognorm','expon','beta',
         'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
         'foldcauchy','gamma','gengamma','loggamma',
         'alpha','anglit','arcsine','betaprime',
         'dgamma','exponweib','exponpow','frechet_l','frechet_r',
         'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
         'genextreme','genhalflogistic','pareto','lomax','halfnorm',
         'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
         'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
         'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
         'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda',
         'vonmises', 'vonmises_line', 'pearson3']


def _assert_hasattr(a, b, msg=None):
    if msg is None:
        msg = '%s does not have attribute %s' % (a, b)
    assert_(hasattr(a, b), msg=msg)


def test_api_regression():
    # https://github.com/scipy/scipy/issues/3802
    _assert_hasattr(scipy.stats.distributions, 'f_gen')


# check function for test generator


def check_distribution(dist, args, alpha):
    D,pval = stats.kstest(dist,'', args=args, N=1000)
    if (pval < alpha):
        D,pval = stats.kstest(dist,'',args=args, N=1000)
        # if (pval < alpha):
        #    D,pval = stats.kstest(dist,'',args=args, N=1000)
        assert_(pval > alpha, msg="D = " + str(D) + "; pval = " + str(pval) +
               "; alpha = " + str(alpha) + "\nargs = " + str(args))

# nose test generator


def test_all_distributions():
    for dist in dists:
        distfunc = getattr(stats, dist)
        nargs = distfunc.numargs
        alpha = 0.01
        if dist == 'fatiguelife':
            alpha = 0.001

        if dist == 'frechet':
            args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
        elif dist == 'triang':
            args = tuple(rand(nargs))
        elif dist == 'reciprocal':
            vals = rand(nargs)
            vals[1] = vals[0] + 1.0
            args = tuple(vals)
        elif dist == 'vonmises':
            yield check_distribution, dist, (10,), alpha
            yield check_distribution, dist, (101,), alpha
            args = tuple(1.0+rand(nargs))
        else:
            args = tuple(1.0+rand(nargs))

        yield check_distribution, dist, args, alpha


def check_vonmises_pdf_periodic(k,l,s,x):
    vm = stats.vonmises(k,loc=l,scale=s)
    assert_almost_equal(vm.pdf(x),vm.pdf(x % (2*numpy.pi*s)))


def check_vonmises_cdf_periodic(k,l,s,x):
    vm = stats.vonmises(k,loc=l,scale=s)
    assert_almost_equal(vm.cdf(x) % 1,vm.cdf(x % (2*numpy.pi*s)) % 1)


def test_vonmises_pdf_periodic():
    for k in [0.1, 1, 101]:
        for x in [0,1,numpy.pi,10,100]:
            yield check_vonmises_pdf_periodic, k, 0, 1, x
            yield check_vonmises_pdf_periodic, k, 1, 1, x
            yield check_vonmises_pdf_periodic, k, 0, 10, x

            yield check_vonmises_cdf_periodic, k, 0, 1, x
            yield check_vonmises_cdf_periodic, k, 1, 1, x
            yield check_vonmises_cdf_periodic, k, 0, 10, x


def test_vonmises_line_support():
    assert_equal(stats.vonmises_line.a, -np.pi)
    assert_equal(stats.vonmises_line.b, np.pi)


class TestRandInt(TestCase):
    def test_rvs(self):
        vals = stats.randint.rvs(5,30,size=100)
        assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
        assert_(len(vals) == 100)
        vals = stats.randint.rvs(5,30,size=(2,50))
        assert_(numpy.shape(vals) == (2,50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.randint.rvs(15,46)
        assert_((val >= 15) & (val < 46))
        assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
        val = stats.randint(15,46).rvs(3)
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_pdf(self):
        k = numpy.r_[0:36]
        out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
        vals = stats.randint.pmf(k,5,30)
        assert_array_almost_equal(vals,out)

    def test_cdf(self):
        x = numpy.r_[0:36:100j]
        k = numpy.floor(x)
        out = numpy.select([k >= 30,k >= 5],[1.0,(k-5.0+1)/(30-5.0)],0)
        vals = stats.randint.cdf(x,5,30)
        assert_array_almost_equal(vals, out, decimal=12)


class TestBinom(TestCase):
    def test_rvs(self):
        vals = stats.binom.rvs(10, 0.75, size=(2, 50))
        assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.binom.rvs(10, 0.75)
        assert_(isinstance(val, int))
        val = stats.binom(10, 0.75).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_pmf(self):
        # regression test for Ticket #1842
        vals1 = stats.binom.pmf(100, 100,1)
        vals2 = stats.binom.pmf(0, 100,0)
        assert_allclose(vals1, 1.0, rtol=1e-15, atol=0)
        assert_allclose(vals2, 1.0, rtol=1e-15, atol=0)

    def test_entropy(self):
        # Basic entropy tests.
        b = stats.binom(2, 0.5)
        expected_p = np.array([0.25, 0.5, 0.25])
        expected_h = -sum(xlogy(expected_p, expected_p))
        h = b.entropy()
        assert_allclose(h, expected_h)

        b = stats.binom(2, 0.0)
        h = b.entropy()
        assert_equal(h, 0.0)

        b = stats.binom(2, 1.0)
        h = b.entropy()
        assert_equal(h, 0.0)


class TestBernoulli(TestCase):
    def test_rvs(self):
        vals = stats.bernoulli.rvs(0.75, size=(2, 50))
        assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.bernoulli.rvs(0.75)
        assert_(isinstance(val, int))
        val = stats.bernoulli(0.75).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_entropy(self):
        # Simple tests of entropy.
        b = stats.bernoulli(0.25)
        expected_h = -0.25*np.log(0.25) - 0.75*np.log(0.75)
        h = b.entropy()
        assert_allclose(h, expected_h)

        b = stats.bernoulli(0.0)
        h = b.entropy()
        assert_equal(h, 0.0)

        b = stats.bernoulli(1.0)
        h = b.entropy()
        assert_equal(h, 0.0)


class TestNBinom(TestCase):
    def test_rvs(self):
        vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
        assert_(numpy.all(vals >= 0))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.nbinom.rvs(10, 0.75)
        assert_(isinstance(val, int))
        val = stats.nbinom(10, 0.75).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_pmf(self):
        # regression test for ticket 1779
        assert_allclose(np.exp(stats.nbinom.logpmf(700, 721, 0.52)),
                        stats.nbinom.pmf(700, 721, 0.52))


class TestGeom(TestCase):
    def test_rvs(self):
        vals = stats.geom.rvs(0.75, size=(2, 50))
        assert_(numpy.all(vals >= 0))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.geom.rvs(0.75)
        assert_(isinstance(val, int))
        val = stats.geom(0.75).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_pmf(self):
        vals = stats.geom.pmf([1,2,3],0.5)
        assert_array_almost_equal(vals,[0.5,0.25,0.125])

    def test_logpmf(self):
        # regression test for ticket 1793
        vals1 = np.log(stats.geom.pmf([1,2,3], 0.5))
        vals2 = stats.geom.logpmf([1,2,3], 0.5)
        assert_allclose(vals1, vals2, rtol=1e-15, atol=0)

    def test_cdf_sf(self):
        vals = stats.geom.cdf([1, 2, 3], 0.5)
        vals_sf = stats.geom.sf([1, 2, 3], 0.5)
        expected = array([0.5, 0.75, 0.875])
        assert_array_almost_equal(vals, expected)
        assert_array_almost_equal(vals_sf, 1-expected)

    def test_logcdf_logsf(self):
        vals = stats.geom.logcdf([1, 2, 3], 0.5)
        vals_sf = stats.geom.logsf([1, 2, 3], 0.5)
        expected = array([0.5, 0.75, 0.875])
        assert_array_almost_equal(vals, np.log(expected))
        assert_array_almost_equal(vals_sf, np.log1p(-expected))

    def test_ppf(self):
        vals = stats.geom.ppf([0.5, 0.75, 0.875], 0.5)
        expected = array([1.0, 2.0, 3.0])
        assert_array_almost_equal(vals, expected)


class TestTruncnorm(TestCase):
    def test_ppf_ticket1131(self):
        vals = stats.truncnorm.ppf([-0.5,0,1e-4,0.5, 1-1e-4,1,2], -1., 1.,
                               loc=[3]*7, scale=2)
        expected = np.array([np.nan, 1, 1.00056419, 3, 4.99943581, 5, np.nan])
        assert_array_almost_equal(vals, expected)

    def test_isf_ticket1131(self):
        vals = stats.truncnorm.isf([-0.5,0,1e-4,0.5, 1-1e-4,1,2], -1., 1.,
                                   loc=[3]*7, scale=2)
        expected = np.array([np.nan, 5, 4.99943581, 3, 1.00056419, 1, np.nan])
        assert_array_almost_equal(vals, expected)

    def test_gh_2477_small_values(self):
        # Check a case that worked in the original issue.
        low, high = -11, -10
        x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
        assert_(low < x.min() < x.max() < high)
        # Check a case that failed in the original issue.
        low, high = 10, 11
        x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
        assert_(low < x.min() < x.max() < high)

    def test_gh_2477_large_values(self):
        # Check a case that fails because of extreme tailness.
        raise SkipTest('truncnorm rvs is know to fail at extreme tails')
        low, high = 100, 101
        x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
        assert_(low < x.min() < x.max() < high)

    def test_gh_1489_trac_962_rvs(self):
        # Check the original example.
        low, high = 10, 15
        x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
        assert_(low < x.min() < x.max() < high)


class TestHypergeom(TestCase):
    def test_rvs(self):
        vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
        assert_(numpy.all(vals >= 0) &
               numpy.all(vals <= 3))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.hypergeom.rvs(20, 3, 10)
        assert_(isinstance(val, int))
        val = stats.hypergeom(20, 3, 10).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_precision(self):
        # comparison number from mpmath
        M = 2500
        n = 50
        N = 500
        tot = M
        good = n
        hgpmf = stats.hypergeom.pmf(2, tot, good, N)
        assert_almost_equal(hgpmf, 0.0010114963068932233, 11)

    def test_cdf_above_one(self):
        # for some values of parameters, hypergeom cdf was >1, see gh-2238
        assert_(0 <= stats.hypergeom.cdf(30, 13397950, 4363, 12390) <= 1.0)
     
    def test_precision2(self):
        # Test hypergeom precision for large numbers.  See #1218.
        # Results compared with those from R.
        oranges = 9.9e4
        pears = 1.1e5
        fruits_eaten = np.array([3, 3.8, 3.9, 4, 4.1, 4.2, 5]) * 1e4
        quantile = 2e4
        res = []
        for eaten in fruits_eaten:
            res.append(stats.hypergeom.sf(quantile, oranges + pears, oranges, eaten))
        expected = np.array([0, 1.904153e-114, 2.752693e-66, 4.931217e-32,
                             8.265601e-11, 0.1237904, 1])
        assert_allclose(res, expected, atol=0, rtol=5e-7)

        # Test with array_like first argument
        quantiles = [1.9e4, 2e4, 2.1e4, 2.15e4]
        res2 = stats.hypergeom.sf(quantiles, oranges + pears, oranges, 4.2e4)
        expected2 = [1, 0.1237904, 6.511452e-34, 3.277667e-69]
        assert_allclose(res2, expected2, atol=0, rtol=5e-7)

    def test_entropy(self):
        # Simple tests of entropy.
        hg = stats.hypergeom(4, 1, 1)
        h = hg.entropy()
        expected_p = np.array([0.75, 0.25])
        expected_h = -np.sum(xlogy(expected_p, expected_p))
        assert_allclose(h, expected_h)

        hg = stats.hypergeom(1, 1, 1)
        h = hg.entropy()
        assert_equal(h, 0.0)


class TestLoggamma(TestCase):

    def test_stats(self):
        # The following precomputed values are from the table in section 2.2
        # of "A Statistical Study of Log-Gamma Distribution", by Ping Shing
        # Chan (thesis, McMaster University, 1993).
        table = np.array([
                # c,    mean,   var,    skew,    exc. kurt.
                 0.5, -1.9635, 4.9348, -1.5351, 4.0000,
                 1.0, -0.5772, 1.6449, -1.1395, 2.4000,
                 12.0, 2.4427, 0.0869, -0.2946, 0.1735,
            ]).reshape(-1, 5)
        for c, mean, var, skew, kurt in table:
            computed = stats.loggamma.stats(c, moments='msvk')
            assert_array_almost_equal(computed, [mean, var, skew, kurt],
                                      decimal=4)


class TestLogser(TestCase):
    def test_rvs(self):
        vals = stats.logser.rvs(0.75, size=(2, 50))
        assert_(numpy.all(vals >= 1))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.logser.rvs(0.75)
        assert_(isinstance(val, int))
        val = stats.logser(0.75).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])


class TestPareto(TestCase):
    def test_stats(self):
        # Check the stats() method with some simple values. Also check
        # that the calculations do not trigger RuntimeWarnings.
        with warnings.catch_warnings():
            warnings.simplefilter("error", RuntimeWarning)

            m, v, s, k = stats.pareto.stats(0.5, moments='mvsk')
            assert_equal(m, np.inf)
            assert_equal(v, np.inf)
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(1.0, moments='mvsk')
            assert_equal(m, np.inf)
            assert_equal(v, np.inf)
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(1.5, moments='mvsk')
            assert_equal(m, 3.0)
            assert_equal(v, np.inf)
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(2.0, moments='mvsk')
            assert_equal(m, 2.0)
            assert_equal(v, np.inf)
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(2.5, moments='mvsk')
            assert_allclose(m, 2.5 / 1.5)
            assert_allclose(v, 2.5 / (1.5*1.5*0.5))
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(3.0, moments='mvsk')
            assert_allclose(m, 1.5)
            assert_allclose(v, 0.75)
            assert_equal(s, np.nan)
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(3.5, moments='mvsk')
            assert_allclose(m, 3.5 / 2.5)
            assert_allclose(v, 3.5 / (2.5*2.5*1.5))
            assert_allclose(s, (2*4.5/0.5)*np.sqrt(1.5/3.5))
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(4.0, moments='mvsk')
            assert_allclose(m, 4.0 / 3.0)
            assert_allclose(v, 4.0 / 18.0)
            assert_allclose(s, 2*(1+4.0)/(4.0-3) * np.sqrt((4.0-2)/4.0))
            assert_equal(k, np.nan)

            m, v, s, k = stats.pareto.stats(4.5, moments='mvsk')
            assert_allclose(m, 4.5 / 3.5)
            assert_allclose(v, 4.5 / (3.5*3.5*2.5))
            assert_allclose(s, (2*5.5/1.5) * np.sqrt(2.5/4.5))
            assert_allclose(k, 6*(4.5**3 + 4.5**2 - 6*4.5 - 2)/(4.5*1.5*0.5))


class TestPearson3(TestCase):
    def test_rvs(self):
        vals = stats.pearson3.rvs(0.1, size=(2, 50))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllFloat'])
        val = stats.pearson3.rvs(0.5)
        assert_(isinstance(val, float))
        val = stats.pearson3(0.5).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllFloat'])
        assert_(len(val) == 3)

    def test_pdf(self):
        vals = stats.pearson3.pdf(2, [0.0, 0.1, 0.2])
        assert_allclose(vals, np.array([0.05399097, 0.05555481, 0.05670246]),
                        atol=1e-6)
        vals = stats.pearson3.pdf(-3, 0.1)
        assert_allclose(vals, np.array([0.00313791]), atol=1e-6)
        vals = stats.pearson3.pdf([-3,-2,-1,0,1], 0.1)
        assert_allclose(vals, np.array([0.00313791, 0.05192304, 0.25028092,
                                        0.39885918, 0.23413173]), atol=1e-6)

    def test_cdf(self):
        vals = stats.pearson3.cdf(2, [0.0, 0.1, 0.2])
        assert_allclose(vals, np.array([0.97724987, 0.97462004, 0.97213626]),
                        atol=1e-6)
        vals = stats.pearson3.cdf(-3, 0.1)
        assert_allclose(vals, [0.00082256], atol=1e-6)
        vals = stats.pearson3.cdf([-3,-2,-1,0,1], 0.1)
        assert_allclose(vals, [8.22563821e-04, 1.99860448e-02, 1.58550710e-01,
                               5.06649130e-01, 8.41442111e-01], atol=1e-6)


class TestPoisson(TestCase):
    def test_rvs(self):
        vals = stats.poisson.rvs(0.5, size=(2, 50))
        assert_(numpy.all(vals >= 0))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.poisson.rvs(0.5)
        assert_(isinstance(val, int))
        val = stats.poisson(0.5).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_stats(self):
        mu = 16.0
        result = stats.poisson.stats(mu, moments='mvsk')
        assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu])


class TestZipf(TestCase):
    def test_rvs(self):
        vals = stats.zipf.rvs(1.5, size=(2, 50))
        assert_(numpy.all(vals >= 1))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.zipf.rvs(1.5)
        assert_(isinstance(val, int))
        val = stats.zipf(1.5).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])

    def test_moments(self):
        # n-th moment is finite iff a > n + 1
        m, v = stats.zipf.stats(a=2.8)
        assert_(np.isfinite(m))
        assert_equal(v, np.inf)

        s, k = stats.zipf.stats(a=4.8, moments='sk')
        assert_(not np.isfinite([s, k]).all())


class TestDLaplace(TestCase):
    def test_rvs(self):
        vals = stats.dlaplace.rvs(1.5, size=(2, 50))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.dlaplace.rvs(1.5)
        assert_(isinstance(val, int))
        val = stats.dlaplace(1.5).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger'])
        assert_(stats.dlaplace.rvs(0.8) is not None)


    def test_stats(self):
        # compare the explicit formulas w/ direct summation using pmf
        a = 1.
        dl = stats.dlaplace(a)
        m, v, s, k = dl.stats('mvsk')

        N = 37
        xx = np.arange(-N, N+1)
        pp = dl.pmf(xx)
        m2, m4 = np.sum(pp*xx**2), np.sum(pp*xx**4)
        assert_equal((m, s), (0,0))
        assert_allclose((v, k), (m2, m4/m2**2 - 3.), atol=1e-14, rtol=1e-8)

    def test_stats2(self):
        a = np.log(2.)
        dl = stats.dlaplace(a)
        m, v, s, k = dl.stats('mvsk')
        assert_equal((m, s), (0.,0.))
        assert_allclose((v, k), (4., 3.25))


class TestInvGamma(TestCase):
    @dec.skipif(NumpyVersion(np.__version__) < '1.7.0',
                "assert_* funcs broken with inf/nan")
    def test_invgamma_inf_gh_1866(self):
        # invgamma's moments are only finite for a>n
        # specific numbers checked w/ boost 1.54
        with warnings.catch_warnings():
            warnings.simplefilter('error', RuntimeWarning)
            mvsk = stats.invgamma.stats(a=19.31, moments='mvsk')
            assert_allclose(mvsk,
                [0.05461496450, 0.0001723162534, 1.020362676, 2.055616582])

            a = [1.1, 3.1, 5.6]
            mvsk = stats.invgamma.stats(a=a, moments='mvsk')
            expected = ([10., 0.476190476, 0.2173913043],       # mmm
                        [np.inf, 0.2061430632, 0.01312749422],  # vvv
                        [np.nan, 41.95235392, 2.919025532],     # sss
                        [np.nan, np.nan, 24.51923076])          # kkk
            for x, y in zip(mvsk, expected):
                assert_almost_equal(x, y)


class TestF(TestCase):
    def test_f_moments(self):
        # n-th moment of F distributions is only finite for n < dfd / 2
        m, v, s, k = stats.f.stats(11, 6.5, moments='mvsk')
        assert_(np.isfinite(m))
        assert_(np.isfinite(v))
        assert_(np.isfinite(s))
        assert_(not np.isfinite(k))

    def test_moments_warnings(self):
        # no warnings should be generated for dfd = 2, 4, 6, 8 (div by zero)
        with warnings.catch_warnings():
            warnings.simplefilter('error', RuntimeWarning)
            stats.f.stats(dfn=[11]*4, dfd=[2, 4, 6, 8], moments='mvsk')

    @dec.knownfailureif(True, 'f stats does not properly broadcast')
    def test_stats_broadcast(self):
        # stats do not fully broadcast just yet
        mv = stats.f.stats(dfn=11, dfd=[11, 12])


def test_rvgeneric_std():
    # Regression test for #1191
    assert_array_almost_equal(stats.t.std([5, 6]), [1.29099445, 1.22474487])


class TestRvDiscrete(TestCase):
    def test_rvs(self):
        states = [-1,0,1,2,3,4]
        probability = [0.0,0.3,0.4,0.0,0.3,0.0]
        samples = 1000
        r = stats.rv_discrete(name='sample',values=(states,probability))
        x = r.rvs(size=samples)
        assert_(isinstance(x, numpy.ndarray))

        for s,p in zip(states,probability):
            assert_(abs(sum(x == s)/float(samples) - p) < 0.05)

        x = r.rvs()
        assert_(isinstance(x, int))

    def test_entropy(self):
        # Basic tests of entropy.
        pvals = np.array([0.25, 0.45, 0.3])
        p = stats.rv_discrete(values=([0, 1, 2], pvals))
        expected_h = -sum(xlogy(pvals, pvals))
        h = p.entropy()
        assert_allclose(h, expected_h)

        p = stats.rv_discrete(values=([0, 1, 2], [1.0, 0, 0]))
        h = p.entropy()
        assert_equal(h, 0.0)


class TestExpon(TestCase):
    def test_zero(self):
        assert_equal(stats.expon.pdf(0),1)

    def test_tail(self):  # Regression test for ticket 807
        assert_equal(stats.expon.cdf(1e-18), 1e-18)
        assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)


class TestGenExpon(TestCase):
    def test_pdf_unity_area(self):
        from scipy.integrate import simps
        # PDF should integrate to one
        assert_almost_equal(simps(stats.genexpon.pdf(numpy.arange(0,10,0.01),
                                                     0.5, 0.5, 2.0),
                                  dx=0.01), 1, 1)

    def test_cdf_bounds(self):
        # CDF should always be positive
        cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
        assert_(numpy.all((0 <= cdf) & (cdf <= 1)))


class TestExponpow(TestCase):
    def test_tail(self):
        assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
        assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5)


class TestSkellam(TestCase):
    def test_pmf(self):
        # comparison to R
        k = numpy.arange(-10, 15)
        mu1, mu2 = 10, 5
        skpmfR = numpy.array(
                   [4.2254582961926893e-005, 1.1404838449648488e-004,
                    2.8979625801752660e-004, 6.9177078182101231e-004,
                    1.5480716105844708e-003, 3.2412274963433889e-003,
                    6.3373707175123292e-003, 1.1552351566696643e-002,
                    1.9606152375042644e-002, 3.0947164083410337e-002,
                    4.5401737566767360e-002, 6.1894328166820688e-002,
                    7.8424609500170578e-002, 9.2418812533573133e-002,
                    1.0139793148019728e-001, 1.0371927988298846e-001,
                    9.9076583077406091e-002, 8.8546660073089561e-002,
                    7.4187842052486810e-002, 5.8392772862200251e-002,
                    4.3268692953013159e-002, 3.0248159818374226e-002,
                    1.9991434305603021e-002, 1.2516877303301180e-002,
                    7.4389876226229707e-003])

        assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15)

    def test_cdf(self):
        # comparison to R, only 5 decimals
        k = numpy.arange(-10, 15)
        mu1, mu2 = 10, 5
        skcdfR = numpy.array(
                   [6.4061475386192104e-005, 1.7810985988267694e-004,
                    4.6790611790020336e-004, 1.1596768997212152e-003,
                    2.7077485103056847e-003, 5.9489760066490718e-003,
                    1.2286346724161398e-002, 2.3838698290858034e-002,
                    4.3444850665900668e-002, 7.4392014749310995e-002,
                    1.1979375231607835e-001, 1.8168808048289900e-001,
                    2.6011268998306952e-001, 3.5253150251664261e-001,
                    4.5392943399683988e-001, 5.5764871387982828e-001,
                    6.5672529695723436e-001, 7.4527195703032389e-001,
                    8.1945979908281064e-001, 8.7785257194501087e-001,
                    9.2112126489802404e-001, 9.5136942471639818e-001,
                    9.7136085902200120e-001, 9.8387773632530240e-001,
                    9.9131672394792536e-001])

        assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5)


class TestLognorm(TestCase):
    def test_pdf(self):
        # Regression test for Ticket #1471: avoid nan with 0/0 situation
        with np.errstate(divide='ignore'):
            pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
            assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])


class TestBeta(TestCase):
    def test_logpdf(self):
        # Regression test for Ticket #1326: avoid nan with 0*log(0) situation
        logpdf = stats.beta.logpdf(0,1,0.5)
        assert_almost_equal(logpdf, -0.69314718056)
        logpdf = stats.beta.logpdf(0,0.5,1)
        assert_almost_equal(logpdf, np.inf)

    def test_logpdf_ticket_1866(self):
        alpha, beta = 267, 1472
        x = np.array([0.2, 0.5, 0.6])
        b = stats.beta(alpha, beta)
        assert_allclose(b.logpdf(x).sum(), -1201.699061824062)
        assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))


class TestBetaPrime(TestCase):
    def test_logpdf(self):
        alpha, beta = 267, 1472
        x = np.array([0.2, 0.5, 0.6])
        b = stats.betaprime(alpha, beta)
        assert_(np.isfinite(b.logpdf(x)).all())
        assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))


class TestGamma(TestCase):
    def test_pdf(self):
        # a few test cases to compare with R
        pdf = stats.gamma.pdf(90, 394, scale=1./5)
        assert_almost_equal(pdf, 0.002312341)

        pdf = stats.gamma.pdf(3, 10, scale=1./5)
        assert_almost_equal(pdf, 0.1620358)

    def test_logpdf(self):
        # Regression test for Ticket #1326: cornercase avoid nan with 0*log(0)
        # situation
        logpdf = stats.gamma.logpdf(0,1)
        assert_almost_equal(logpdf, 0)


class TestChi2(TestCase):
    # regression tests after precision improvements, ticket:1041, not verified
    def test_precision(self):
        assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003, 14)
        assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778, 14)


class TestArrayArgument(TestCase):  # test for ticket:992
    def test_noexception(self):
        rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5), size=(10,5))
        assert_equal(rvs.shape, (10,5))


class TestDocstring(TestCase):
    def test_docstrings(self):
        # See ticket #761
        if stats.rayleigh.__doc__ is not None:
            self.assertTrue("rayleigh" in stats.rayleigh.__doc__.lower())
        if stats.bernoulli.__doc__ is not None:
            self.assertTrue("bernoulli" in stats.bernoulli.__doc__.lower())

    def test_no_name_arg(self):
        # If name is not given, construction shouldn't fail.  See #1508.
        stats.rv_continuous()
        stats.rv_discrete()


class TestEntropy(TestCase):
    def test_entropy_positive(self):
        # See ticket #497
        pk = [0.5,0.2,0.3]
        qk = [0.1,0.25,0.65]
        eself = stats.entropy(pk,pk)
        edouble = stats.entropy(pk,qk)
        assert_(0.0 == eself)
        assert_(edouble >= 0.0)

    def test_entropy_base(self):
        pk = np.ones(16, float)
        S = stats.entropy(pk, base=2.)
        assert_(abs(S - 4.) < 1.e-5)

        qk = np.ones(16, float)
        qk[:8] = 2.
        S = stats.entropy(pk, qk)
        S2 = stats.entropy(pk, qk, base=2.)
        assert_(abs(S/S2 - np.log(2.)) < 1.e-5)

    def test_entropy_zero(self):
        # Test for PR-479
        assert_almost_equal(stats.entropy([0, 1, 2]), 0.63651416829481278,
                            decimal=12)

    def test_entropy_2d(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk),
                [0.1933259, 0.18609809])

    @dec.skipif(NumpyVersion(np.__version__) < '1.7.0',
                "assert_* funcs broken with inf/nan")
    def test_entropy_2d_zero(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk),
                [np.inf, 0.18609809])

        pk[0][0] = 0.0
        assert_array_almost_equal(stats.entropy(pk, qk),
                [0.17403988, 0.18609809])


def TestArgsreduce():
    a = array([1,3,2,1,2,3,3])
    b,c = argsreduce(a > 1, a, 2)

    assert_array_equal(b, [3,2,2,3,3])
    assert_array_equal(c, [2,2,2,2,2])

    b,c = argsreduce(2 > 1, a, 2)
    assert_array_equal(b, a[0])
    assert_array_equal(c, [2])

    b,c = argsreduce(a > 0, a, 2)
    assert_array_equal(b, a)
    assert_array_equal(c, [2] * numpy.size(a))


class TestFitMethod(object):
    skip = ['ncf']

    @dec.slow
    def test_fit(self):
        def check(func, dist, args, alpha):
            if dist in self.skip:
                raise SkipTest("%s fit known to fail" % dist)
            distfunc = getattr(stats, dist)
            with np.errstate(all='ignore'):
                res = distfunc.rvs(*args, **{'size':200})
                vals = distfunc.fit(res)
                vals2 = distfunc.fit(res, optimizer='powell')
            # Only check the length of the return
            # FIXME: should check the actual results to see if we are 'close'
            #   to what was created --- but what is 'close' enough
            if dist == 'frechet':
                assert_(len(vals) == len(args))
                assert_(len(vals2) == len(args))
            else:
                assert_(len(vals) == 2+len(args))
                assert_(len(vals2) == 2+len(args))

        for func, dist, args, alpha in test_all_distributions():
            yield check, func, dist, args, alpha

    @dec.slow
    def test_fix_fit(self):
        def check(func, dist, args, alpha):
            # Not sure why 'ncf', and 'beta' are failing
            # frechet has different len(args) than distfunc.numargs
            if dist in self.skip + ['frechet']:
                raise SkipTest("%s fit known to fail" % dist)
            distfunc = getattr(stats, dist)
            with np.errstate(all='ignore'):
                res = distfunc.rvs(*args, **{'size':200})
                vals = distfunc.fit(res,floc=0)
                vals2 = distfunc.fit(res,fscale=1)
                assert_(len(vals) == 2+len(args))
                assert_(vals[-2] == 0)
                assert_(vals2[-1] == 1)
                assert_(len(vals2) == 2+len(args))
                if len(args) > 0:
                    vals3 = distfunc.fit(res, f0=args[0])
                    assert_(len(vals3) == 2+len(args))
                    assert_(vals3[0] == args[0])
                if len(args) > 1:
                    vals4 = distfunc.fit(res, f1=args[1])
                    assert_(len(vals4) == 2+len(args))
                    assert_(vals4[1] == args[1])
                if len(args) > 2:
                    vals5 = distfunc.fit(res, f2=args[2])
                    assert_(len(vals5) == 2+len(args))
                    assert_(vals5[2] == args[2])

        for func, dist, args, alpha in test_all_distributions():
            yield check, func, dist, args, alpha

    def test_fix_fit_2args_lognorm(self):
        # Regression test for #1551.
        np.random.seed(12345)
        with np.errstate(all='ignore'):
            x = stats.lognorm.rvs(0.25, 0., 20.0, size=20)
            assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)),
                            [0.25888672, 0, 20], atol=1e-5)

    def test_fix_fit_norm(self):
        x = np.arange(1, 6)

        loc, scale = stats.norm.fit(x)
        assert_almost_equal(loc, 3)
        assert_almost_equal(scale, np.sqrt(2))

        loc, scale = stats.norm.fit(x, floc=2)
        assert_equal(loc, 2)
        assert_equal(scale, np.sqrt(3))

        loc, scale = stats.norm.fit(x, fscale=2)
        assert_almost_equal(loc, 3)
        assert_equal(scale, 2)

    def test_fix_fit_gamma(self):
        x = np.arange(1, 6)
        meanlog = np.log(x).mean()

        # A basic test of gamma.fit with floc=0.
        floc = 0
        a, loc, scale = stats.gamma.fit(x, floc=floc)
        s = np.log(x.mean()) - meanlog
        assert_almost_equal(np.log(a) - special.digamma(a), s, decimal=5)
        assert_equal(loc, floc)
        assert_almost_equal(scale, x.mean()/a, decimal=8)

        # Regression tests for gh-2514.
        # The problem was that if `floc=0` was given, any other fixed
        # parameters were ignored.
        f0 = 1
        floc = 0
        a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
        assert_equal(a, f0)
        assert_equal(loc, floc)
        assert_almost_equal(scale, x.mean()/a, decimal=8)

        f0 = 2
        floc = 0
        a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
        assert_equal(a, f0)
        assert_equal(loc, floc)
        assert_almost_equal(scale, x.mean()/a, decimal=8)

        # loc and scale fixed.
        floc = 0
        fscale = 2
        a, loc, scale = stats.gamma.fit(x, floc=floc, fscale=fscale)
        assert_equal(loc, floc)
        assert_equal(scale, fscale)
        c = meanlog - np.log(fscale)
        assert_almost_equal(special.digamma(a), c)

    def test_fix_fit_beta(self):
        # Test beta.fit when both floc and fscale are given.

        def mlefunc(a, b, x):
            # Zeros of this function are critical points of
            # the maximum likelihood function.
            n = len(x)
            s1 = np.log(x).sum()
            s2 = np.log(1-x).sum()
            psiab = special.psi(a + b)
            func = [s1 - n * (-psiab + special.psi(a)),
                    s2 - n * (-psiab + special.psi(b))]
            return func

        # Basic test with floc and fscale given.
        x = np.array([0.125, 0.25, 0.5])
        a, b, loc, scale = stats.beta.fit(x, floc=0, fscale=1)
        assert_equal(loc, 0)
        assert_equal(scale, 1)
        assert_allclose(mlefunc(a, b, x), [0,0], atol=1e-6)

        # Basic test with f0, floc and fscale given.
        # This is also a regression test for gh-2514.
        x = np.array([0.125, 0.25, 0.5])
        a, b, loc, scale = stats.beta.fit(x, f0=2, floc=0, fscale=1)
        assert_equal(a, 2)
        assert_equal(loc, 0)
        assert_equal(scale, 1)
        da, db = mlefunc(a, b, x)
        assert_allclose(db, 0, atol=1e-5)

        # Same floc and fscale values as above, but reverse the data
        # and fix b (f1).
        x2 = 1 - x
        a2, b2, loc2, scale2 = stats.beta.fit(x2, f1=2, floc=0, fscale=1)
        assert_equal(b2, 2)
        assert_equal(loc2, 0)
        assert_equal(scale2, 1)
        da, db = mlefunc(a2, b2, x2)
        assert_allclose(da, 0, atol=1e-5)
        # a2 of this test should equal b from above.
        assert_almost_equal(a2, b)

        # Check for detection of data out of bounds when floc and fscale
        # are given.
        assert_raises(ValueError, stats.beta.fit, x, floc=0.5, fscale=1)
        y = np.array([0, .5, 1])
        assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1)
        assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f0=2)
        assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f1=2)

        # Check that attempting to fix all the parameters raises a ValueError.
        assert_raises(ValueError, stats.beta.fit, y, f0=0, f1=1,
                                                     floc=2, fscale=3)


class TestFrozen(TestCase):
    # Test that a frozen distribution gives the same results as the original object.
    #
    # Only tested for the normal distribution (with loc and scale specified)
    # and for the gamma distribution (with a shape parameter specified).
    def test_norm(self):
        dist = stats.norm
        frozen = stats.norm(loc=10.0, scale=3.0)

        result_f = frozen.pdf(20.0)
        result = dist.pdf(20.0, loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.cdf(20.0)
        result = dist.cdf(20.0, loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.ppf(0.25)
        result = dist.ppf(0.25, loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.isf(0.25)
        result = dist.isf(0.25, loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.sf(10.0)
        result = dist.sf(10.0, loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.median()
        result = dist.median(loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.mean()
        result = dist.mean(loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.var()
        result = dist.var(loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.std()
        result = dist.std(loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.entropy()
        result = dist.entropy(loc=10.0, scale=3.0)
        assert_equal(result_f, result)

        result_f = frozen.moment(2)
        result = dist.moment(2,loc=10.0, scale=3.0)
        assert_equal(result_f, result)

    def test_gamma(self):
        a = 2.0
        dist = stats.gamma
        frozen = stats.gamma(a)

        result_f = frozen.pdf(20.0)
        result = dist.pdf(20.0, a)
        assert_equal(result_f, result)

        result_f = frozen.cdf(20.0)
        result = dist.cdf(20.0, a)
        assert_equal(result_f, result)

        result_f = frozen.ppf(0.25)
        result = dist.ppf(0.25, a)
        assert_equal(result_f, result)

        result_f = frozen.isf(0.25)
        result = dist.isf(0.25, a)
        assert_equal(result_f, result)

        result_f = frozen.sf(10.0)
        result = dist.sf(10.0, a)
        assert_equal(result_f, result)

        result_f = frozen.median()
        result = dist.median(a)
        assert_equal(result_f, result)

        result_f = frozen.mean()
        result = dist.mean(a)
        assert_equal(result_f, result)

        result_f = frozen.var()
        result = dist.var(a)
        assert_equal(result_f, result)

        result_f = frozen.std()
        result = dist.std(a)
        assert_equal(result_f, result)

        result_f = frozen.entropy()
        result = dist.entropy(a)
        assert_equal(result_f, result)

        result_f = frozen.moment(2)
        result = dist.moment(2, a)
        assert_equal(result_f, result)

    def test_regression_ticket_1293(self):
        # Create a frozen distribution.
        frozen = stats.lognorm(1)
        # Call one of its methods that does not take any keyword arguments.
        m1 = frozen.moment(2)
        # Now call a method that takes a keyword argument.
        frozen.stats(moments='mvsk')
        # Call moment(2) again.
        # After calling stats(), the following was raising an exception.
        # So this test passes if the following does not raise an exception.
        m2 = frozen.moment(2)
        # The following should also be true, of course.  But it is not
        # the focus of this test.
        assert_equal(m1, m2)

    def test_ab(self):
        # test that the support of a frozen distribution 
        # (i) remains frozen even if it changes for the original one
        # (ii) is actually correct if the shape parameters are such that
        #      the values of [a, b] are not the default [0, inf]
        # take a genpareto as an example where the support
        # depends on the value of the shape parameter:
        # for c > 0: a, b = 0, inf
        # for c < 0: a, b = 0, -1/c
        rv = stats.genpareto(c=-0.1)
        a, b = rv.dist.a, rv.dist.b
        assert_equal([a, b], [0., 10.])

        stats.genpareto.pdf(0, c=0.1)  # this changes genpareto.b
        assert_equal([rv.dist.a, rv.dist.b], [a, b])

        rv1 = stats.genpareto(c=0.1)
        assert_(rv1.dist is not rv.dist)

    def test_rv_frozen_in_namespace(self):
        # Regression test for gh-3522
        assert_(hasattr(stats.distributions, 'rv_frozen'))


class TestExpect(TestCase):
    # Test for expect method.
    #
    # Uses normal distribution and beta distribution for finite bounds, and
    # hypergeom for discrete distribution with finite support
    def test_norm(self):
        v = stats.norm.expect(lambda x: (x-5)*(x-5), loc=5, scale=2)
        assert_almost_equal(v, 4, decimal=14)

        m = stats.norm.expect(lambda x: (x), loc=5, scale=2)
        assert_almost_equal(m, 5, decimal=14)

        lb = stats.norm.ppf(0.05, loc=5, scale=2)
        ub = stats.norm.ppf(0.95, loc=5, scale=2)
        prob90 = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub)
        assert_almost_equal(prob90, 0.9, decimal=14)

        prob90c = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub,
                                    conditional=True)
        assert_almost_equal(prob90c, 1., decimal=14)

    def test_beta(self):
        # case with finite support interval
        v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10,5),
                              loc=5, scale=2)
        assert_almost_equal(v, 1./18., decimal=13)

        m = stats.beta.expect(lambda x: x, args=(10,5), loc=5., scale=2.)
        assert_almost_equal(m, 19/3., decimal=13)

        ub = stats.beta.ppf(0.95, 10, 10, loc=5, scale=2)
        lb = stats.beta.ppf(0.05, 10, 10, loc=5, scale=2)
        prob90 = stats.beta.expect(lambda x: 1., args=(10,10), loc=5.,
                                   scale=2.,lb=lb, ub=ub, conditional=False)
        assert_almost_equal(prob90, 0.9, decimal=13)

        prob90c = stats.beta.expect(lambda x: 1, args=(10,10), loc=5,
                                    scale=2, lb=lb, ub=ub, conditional=True)
        assert_almost_equal(prob90c, 1., decimal=13)

    def test_hypergeom(self):
        # test case with finite bounds

        # without specifying bounds
        m_true, v_true = stats.hypergeom.stats(20, 10, 8, loc=5.)
        m = stats.hypergeom.expect(lambda x: x, args=(20, 10, 8), loc=5.)
        assert_almost_equal(m, m_true, decimal=13)

        v = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8),
                                   loc=5.)
        assert_almost_equal(v, v_true, decimal=14)

        # with bounds, bounds equal to shifted support
        v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8),
                                          loc=5., lb=5, ub=13)
        assert_almost_equal(v_bounds, v_true, decimal=14)

        # drop boundary points
        prob_true = 1-stats.hypergeom.pmf([5, 13], 20, 10, 8, loc=5).sum()
        prob_bounds = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
                                          loc=5., lb=6, ub=12)
        assert_almost_equal(prob_bounds, prob_true, decimal=13)

        # conditional
        prob_bc = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5.,
                                           lb=6, ub=12, conditional=True)
        assert_almost_equal(prob_bc, 1, decimal=14)

        # check simple integral
        prob_b = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
                                        lb=0, ub=8)
        assert_almost_equal(prob_b, 1, decimal=13)

    def test_poisson(self):
        # poisson, use lower bound only
        prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3,
                                      conditional=False)
        prob_b_true = 1-stats.poisson.cdf(2,2)
        assert_almost_equal(prob_bounds, prob_b_true, decimal=14)

        prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2,
                                       conditional=True)
        assert_almost_equal(prob_lb, 1, decimal=14)

    def test_genhalflogistic(self):
        # genhalflogistic, changes upper bound of support in _argcheck
        # regression test for gh-2622
        halflog = stats.genhalflogistic
        # check consistency when calling expect twice with the same input
        res1 = halflog.expect(args=(1.5,))
        halflog.expect(args=(0.5,))
        res2 = halflog.expect(args=(1.5,))
        assert_almost_equal(res1, res2, decimal=14)

    def test_rice_overflow(self):
        # rice.pdf(999, 0.74) was inf since special.i0 silentyly overflows
        # check that using i0e fixes it
        assert_(np.isfinite(stats.rice.pdf(999, 0.74)))

        assert_(np.isfinite(stats.rice.expect(lambda x: 1, args=(0.74,))))
        assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,))))
        assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,))))


class TestNct(TestCase):
    def test_nc_parameter(self):
        # Parameter values c<=0 were not enabled (gh-2402).
        # For negative values c and for c=0 results of rv.cdf(0) below were nan
        rv = stats.nct(5, 0)
        assert_equal(rv.cdf(0), 0.5)
        rv = stats.nct(5, -1)
        assert_almost_equal(rv.cdf(0), 0.841344746069, decimal=10)

    def test_broadcasting(self):
        res = stats.nct.pdf(5, np.arange(4,7)[:,None], np.linspace(0.1, 1, 4))
        expected = array([[0.00321886, 0.00557466, 0.00918418, 0.01442997],
                          [0.00217142, 0.00395366, 0.00683888, 0.01126276],
                          [0.00153078, 0.00291093, 0.00525206, 0.00900815]])
        assert_allclose(res, expected, rtol=1e-5)

    def text_variance_gh_issue_2401(self):
        # Computation of the variance of a non-central t-distribution resulted
        # in a TypeError: ufunc 'isinf' not supported for the input types,
        # and the inputs could not be safely coerced to any supported types
        # according to the casting rule 'safe'
        rv = stats.nct(4, 0)
        assert_equal(rv.var(), 2.0)

    def test_nct_inf_moments(self):
        # n-th moment of nct only exists for df > n
        m, v, s, k = stats.nct.stats(df=1.9, nc=0.3, moments='mvsk')
        assert_(np.isfinite(m))
        assert_equal([v, s, k], [np.inf, np.nan, np.nan])

        m, v, s, k = stats.nct.stats(df=3.1, nc=0.3, moments='mvsk')
        assert_(np.isfinite([m, v, s]).all())
        assert_equal(k, np.nan)


class TestRice(TestCase):
    def test_rice_zero_b(self):
        # rice distribution should work with b=0, cf gh-2164
        x = [0.2, 1., 5.]
        assert_(np.isfinite(stats.rice.pdf(x, b=0.)).all())
        assert_(np.isfinite(stats.rice.logpdf(x, b=0.)).all())
        assert_(np.isfinite(stats.rice.cdf(x, b=0.)).all())
        assert_(np.isfinite(stats.rice.logcdf(x, b=0.)).all())

        q = [0.1, 0.1, 0.5, 0.9]
        assert_(np.isfinite(stats.rice.ppf(q, b=0.)).all())

        mvsk = stats.rice.stats(0, moments='mvsk')
        assert_(np.isfinite(mvsk).all())

        # furthermore, pdf is continuous as b\to 0
        # rice.pdf(x, b\to 0) = x exp(-x^2/2) + O(b^2)
        # see e.g. Abramovich & Stegun 9.6.7 & 9.6.10
        b = 1e-8
        assert_allclose(stats.rice.pdf(x, 0), stats.rice.pdf(x, b),
                atol=b, rtol=0)

    def test_rice_rvs(self):
        rvs = stats.rice.rvs
        assert_equal(rvs(b=3.).size, 1)
        assert_equal(rvs(b=3., size=(3, 5)).shape, (3, 5))


class TestErlang(TestCase):
    def test_erlang_runtimewarning(self):
        # erlang should generate a RuntimeWarning if a non-integer
        # shape parameter is used.
        with warnings.catch_warnings():
            warnings.simplefilter("error", RuntimeWarning)

            # The non-integer shape parameter 1.3 should trigger a RuntimeWarning
            assert_raises(RuntimeWarning,
                              stats.erlang.rvs, 1.3, loc=0, scale=1, size=4)

            # Calling the fit method with `f0` set to an integer should
            # *not* trigger a RuntimeWarning.  It should return the same
            # values as gamma.fit(...).
            data = [0.5, 1.0, 2.0, 4.0]
            result_erlang = stats.erlang.fit(data, f0=1)
            result_gamma = stats.gamma.fit(data, f0=1)
            assert_allclose(result_erlang, result_gamma, rtol=1e-3)


class TestRdist(TestCase):
    @dec.slow
    def test_rdist_cdf_gh1285(self):
        # check workaround in rdist._cdf for issue gh-1285.
        distfn = stats.rdist
        values = [0.001, 0.5, 0.999]
        assert_almost_equal(distfn.cdf(distfn.ppf(values, 541.0), 541.0),
                                values, decimal=5)


def test_540_567():
    # test for nan returned in tickets 540, 567
    assert_almost_equal(stats.norm.cdf(-1.7624320982),0.03899815971089126,
                            decimal=10, err_msg='test_540_567')
    assert_almost_equal(stats.norm.cdf(-1.7624320983),0.038998159702449846,
                            decimal=10, err_msg='test_540_567')
    assert_almost_equal(stats.norm.cdf(1.38629436112, loc=0.950273420309,
                            scale=0.204423758009),0.98353464004309321,
                            decimal=10, err_msg='test_540_567')


def test_regression_ticket_1316():
    # The following was raising an exception, because _construct_default_doc()
    # did not handle the default keyword extradoc=None.  See ticket #1316.
    g = stats._continuous_distns.gamma_gen(name='gamma')


def test_regression_ticket_1326():
    # adjust to avoid nan with 0*log(0)
    assert_almost_equal(stats.chi2.pdf(0.0, 2), 0.5, 14)


def test_regression_tukey_lambda():
    # Make sure that Tukey-Lambda distribution correctly handles non-positive lambdas.
    x = np.linspace(-5.0, 5.0, 101)

    olderr = np.seterr(divide='ignore')
    try:
        for lam in [0.0, -1.0, -2.0, np.array([[-1.0], [0.0], [-2.0]])]:
            p = stats.tukeylambda.pdf(x, lam)
            assert_((p != 0.0).all())
            assert_(~np.isnan(p).all())

        lam = np.array([[-1.0], [0.0], [2.0]])
        p = stats.tukeylambda.pdf(x, lam)
    finally:
        np.seterr(**olderr)

    assert_(~np.isnan(p).all())
    assert_((p[0] != 0.0).all())
    assert_((p[1] != 0.0).all())
    assert_((p[2] != 0.0).any())
    assert_((p[2] == 0.0).any())


@dec.skipif(DOCSTRINGS_STRIPPED)
def test_regression_ticket_1421():
    assert_('pdf(x, mu, loc=0, scale=1)' not in stats.poisson.__doc__)
    assert_('pmf(x,' in stats.poisson.__doc__)


def test_nan_arguments_gh_issue_1362():
    assert_(np.isnan(stats.t.logcdf(1, np.nan)))
    assert_(np.isnan(stats.t.cdf(1, np.nan)))
    assert_(np.isnan(stats.t.logsf(1, np.nan)))
    assert_(np.isnan(stats.t.sf(1, np.nan)))
    assert_(np.isnan(stats.t.pdf(1, np.nan)))
    assert_(np.isnan(stats.t.logpdf(1, np.nan)))
    assert_(np.isnan(stats.t.ppf(1, np.nan)))
    assert_(np.isnan(stats.t.isf(1, np.nan)))

    assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5)))
    assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5)))


def test_frozen_fit_ticket_1536():
    np.random.seed(5678)
    true = np.array([0.25, 0., 0.5])
    x = stats.lognorm.rvs(true[0], true[1], true[2], size=100)

    olderr = np.seterr(divide='ignore')
    try:
        params = np.array(stats.lognorm.fit(x, floc=0.))
    finally:
        np.seterr(**olderr)

    assert_almost_equal(params, true, decimal=2)

    params = np.array(stats.lognorm.fit(x, fscale=0.5, loc=0))
    assert_almost_equal(params, true, decimal=2)

    params = np.array(stats.lognorm.fit(x, f0=0.25, loc=0))
    assert_almost_equal(params, true, decimal=2)

    params = np.array(stats.lognorm.fit(x, f0=0.25, floc=0))
    assert_almost_equal(params, true, decimal=2)

    np.random.seed(5678)
    loc = 1
    floc = 0.9
    x = stats.norm.rvs(loc, 2., size=100)
    params = np.array(stats.norm.fit(x, floc=floc))
    expected = np.array([floc, np.sqrt(((x-floc)**2).mean())])
    assert_almost_equal(params, expected, decimal=4)


def test_regression_ticket_1530():
    # Check the starting value works for Cauchy distribution fit.
    np.random.seed(654321)
    rvs = stats.cauchy.rvs(size=100)
    params = stats.cauchy.fit(rvs)
    expected = (0.045, 1.142)
    assert_almost_equal(params, expected, decimal=1)


def test_tukeylambda_stats_ticket_1545():
    # Some test for the variance and kurtosis of the Tukey Lambda distr.
    # See test_tukeylamdba_stats.py for more tests.

    mv = stats.tukeylambda.stats(0, moments='mvsk')
    # Known exact values:
    expected = [0, np.pi**2/3, 0, 1.2]
    assert_almost_equal(mv, expected, decimal=10)

    mv = stats.tukeylambda.stats(3.13, moments='mvsk')
    # 'expected' computed with mpmath.
    expected = [0, 0.0269220858861465102, 0, -0.898062386219224104]
    assert_almost_equal(mv, expected, decimal=10)

    mv = stats.tukeylambda.stats(0.14, moments='mvsk')
    # 'expected' computed with mpmath.
    expected = [0, 2.11029702221450250, 0, -0.02708377353223019456]
    assert_almost_equal(mv, expected, decimal=10)


def test_poisson_logpmf_ticket_1436():
    assert_(np.isfinite(stats.poisson.logpmf(1500, 200)))


def test_powerlaw_stats():
    """Test the powerlaw stats function.

    This unit test is also a regression test for ticket 1548.

    The exact values are:
    mean:
        mu = a / (a + 1)
    variance:
        sigma**2 = a / ((a + 2) * (a + 1) ** 2)
    skewness:
        One formula (see http://en.wikipedia.org/wiki/Skewness) is
            gamma_1 = (E[X**3] - 3*mu*E[X**2] + 2*mu**3) / sigma**3
        A short calculation shows that E[X**k] is a / (a + k), so gamma_1
        can be implemented as
            n = a/(a+3) - 3*(a/(a+1))*a/(a+2) + 2*(a/(a+1))**3
            d = sqrt(a/((a+2)*(a+1)**2)) ** 3
            gamma_1 = n/d
        Either by simplifying, or by a direct calculation of mu_3 / sigma**3,
        one gets the more concise formula:
            gamma_1 = -2.0 * ((a - 1) / (a + 3)) * sqrt((a + 2) / a)
    kurtosis: (See http://en.wikipedia.org/wiki/Kurtosis)
        The excess kurtosis is
            gamma_2 = mu_4 / sigma**4 - 3
        A bit of calculus and algebra (sympy helps) shows that
            mu_4 = 3*a*(3*a**2 - a + 2) / ((a+1)**4 * (a+2) * (a+3) * (a+4))
        so
            gamma_2 = 3*(3*a**2 - a + 2) * (a+2) / (a*(a+3)*(a+4)) - 3
        which can be rearranged to
            gamma_2 = 6 * (a**3 - a**2 - 6*a + 2) / (a*(a+3)*(a+4))
    """
    cases = [(1.0, (0.5, 1./12, 0.0, -1.2)),
             (2.0, (2./3, 2./36, -0.56568542494924734, -0.6))]
    for a, exact_mvsk in cases:
        mvsk = stats.powerlaw.stats(a, moments="mvsk")
        assert_array_almost_equal(mvsk, exact_mvsk)


def test_ksone_fit_freeze():
    # Regression test for ticket #1638.
    d = np.array(
        [-0.18879233, 0.15734249, 0.18695107, 0.27908787, -0.248649,
         -0.2171497, 0.12233512, 0.15126419, 0.03119282, 0.4365294,
          0.08930393, -0.23509903, 0.28231224, -0.09974875, -0.25196048,
          0.11102028, 0.1427649, 0.10176452, 0.18754054, 0.25826724,
          0.05988819, 0.0531668, 0.21906056, 0.32106729, 0.2117662,
          0.10886442, 0.09375789, 0.24583286, -0.22968366, -0.07842391,
         -0.31195432, -0.21271196, 0.1114243, -0.13293002, 0.01331725,
         -0.04330977, -0.09485776, -0.28434547, 0.22245721, -0.18518199,
         -0.10943985, -0.35243174, 0.06897665, -0.03553363, -0.0701746,
         -0.06037974, 0.37670779, -0.21684405])

    try:
        olderr = np.seterr(invalid='ignore')
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', UserWarning)
            warnings.simplefilter('ignore', RuntimeWarning)
            stats.ksone.fit(d)
    finally:
        np.seterr(**olderr)


def test_norm_logcdf():
    # Test precision of the logcdf of the normal distribution.
    # This precision was enhanced in ticket 1614.
    x = -np.asarray(list(range(0, 120, 4)))
    # Values from R
    expected = [-0.69314718, -10.36010149, -35.01343716, -75.41067300,
                -131.69539607, -203.91715537, -292.09872100, -396.25241451,
                -516.38564863, -652.50322759, -804.60844201, -972.70364403,
                -1156.79057310, -1356.87055173, -1572.94460885, -1805.01356068,
                -2053.07806561, -2317.13866238, -2597.19579746, -2893.24984493,
                -3205.30112136, -3533.34989701, -3877.39640444, -4237.44084522,
                -4613.48339520, -5005.52420869, -5413.56342187, -5837.60115548,
                -6277.63751711, -6733.67260303]

    olderr = np.seterr(divide='ignore')
    try:
        assert_allclose(stats.norm().logcdf(x), expected, atol=1e-8)
    finally:
        np.seterr(**olderr)


def test_hypergeom_interval_1802():
    # these two had endless loops
    assert_equal(stats.hypergeom.interval(.95, 187601, 43192, 757),
                 (152.0, 197.0))
    assert_equal(stats.hypergeom.interval(.945, 187601, 43192, 757),
                 (152.0, 197.0))
    # this was working also before
    assert_equal(stats.hypergeom.interval(.94, 187601, 43192, 757),
                 (153.0, 196.0))

    # degenerate case .a == .b
    assert_equal(stats.hypergeom.ppf(0.02, 100, 100, 8), 8)
    assert_equal(stats.hypergeom.ppf(1, 100, 100, 8), 8)


def test_distribution_too_many_args():
    # Check that a TypeError is raised when too many args are given to a method
    # Regression test for ticket 1815.
    x = np.linspace(0.1, 0.7, num=5)
    assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0)
    assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, loc=1.0)
    assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, 5)
    assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.rvs, 2., 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.cdf, x, 2., 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.ppf, x, 2., 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.stats, 2., 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.entropy, 2., 3, loc=1.0, scale=0.5)
    assert_raises(TypeError, stats.gamma.fit, x, 2., 3, loc=1.0, scale=0.5)

    # These should not give errors
    stats.gamma.pdf(x, 2, 3)  # loc=3
    stats.gamma.pdf(x, 2, 3, 4)  # loc=3, scale=4
    stats.gamma.stats(2., 3)
    stats.gamma.stats(2., 3, 4)
    stats.gamma.stats(2., 3, 4, 'mv')
    stats.gamma.rvs(2., 3, 4, 5)
    stats.gamma.fit(stats.gamma.rvs(2., size=7), 2.)

    # Also for a discrete distribution
    stats.geom.pmf(x, 2, loc=3)  # no error, loc=3
    assert_raises(TypeError, stats.geom.pmf, x, 2, 3, 4)
    assert_raises(TypeError, stats.geom.pmf, x, 2, 3, loc=4)

    # And for distributions with 0, 2 and 3 args respectively
    assert_raises(TypeError, stats.expon.pdf, x, 3, loc=1.0)
    assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, loc=1.0)
    assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, 0.1, 0.1)
    assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, loc=1.0)
    assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, 1.0, scale=0.5)
    stats.ncf.pdf(x, 3, 4, 5, 6, 1.0)  # 3 args, plus loc/scale


def test_ncx2_tails_ticket_955():
    # Trac #955 -- check that the cdf computed by special functions
    # matches the integrated pdf
    a = stats.ncx2.cdf(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
    b = stats.ncx2._cdfvec(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
    assert_allclose(a, b, rtol=1e-3, atol=0)


def test_foldnorm_zero():
    # Parameter value c=0 was not enabled, see gh-2399.
    rv = stats.foldnorm(0, scale=1)
    assert_equal(rv.cdf(0), 0)  # rv.cdf(0) previously resulted in: nan


def test_stats_shapes_argcheck():
    # stats method was failing for vector shapes if some of the values
    # were outside of the allowed range, see gh-2678
    mv3 = stats.invgamma.stats([0.0, 0.5, 1.0], 1, 0.5)  # 0 is not a legal `a`
    mv2 = stats.invgamma.stats([0.5, 1.0], 1, 0.5)
    mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2)
    assert_equal(mv2_augmented, mv3)

    mv3 = stats.lognorm.stats([2, 2.4, -1])  # -1 is not a legal shape parameter
    mv2 = stats.lognorm.stats([2, 2.4])
    mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2)
    assert_equal(mv2_augmented, mv3)

    # FIXME: this is only a quick-and-dirty test of a quick-and-dirty bugfix.
    # stats method with multiple shape parameters is not properly vectorized
    # anyway, so some distributions may or may not fail.


## Test subclassing distributions w/ explicit shapes

class _distr_gen(stats.rv_continuous):
    def _pdf(self, x, a):
        return 42


class _distr2_gen(stats.rv_continuous):
    def _cdf(self, x, a):
        return 42 * a + x


class _distr3_gen(stats.rv_continuous):
    def _pdf(self, x, a, b):
        return a + b

    def _cdf(self, x, a):
        # Different # of shape params from _pdf, to be able to check that
        # inspection catches the inconsistency."""
        return 42 * a + x


class _distr6_gen(stats.rv_continuous):
    # Two shape parameters (both _pdf and _cdf defined, consistent shapes.)
    def _pdf(self, x, a, b):
        return a*x + b

    def _cdf(self, x, a, b):
        return 42 * a + x


class TestSubclassingExplicitShapes(TestCase):
    # Construct a distribution w/ explicit shapes parameter and test it.

    def test_correct_shapes(self):
        dummy_distr = _distr_gen(name='dummy', shapes='a')
        assert_equal(dummy_distr.pdf(1, a=1), 42)

    def test_wrong_shapes_1(self):
        dummy_distr = _distr_gen(name='dummy', shapes='A')
        assert_raises(TypeError, dummy_distr.pdf, 1, **dict(a=1))

    def test_wrong_shapes_2(self):
        dummy_distr = _distr_gen(name='dummy', shapes='a, b, c')
        dct = dict(a=1, b=2, c=3)
        assert_raises(TypeError, dummy_distr.pdf, 1, **dct)

    def test_shapes_string(self):
        # shapes must be a string
        dct = dict(name='dummy', shapes=42)
        assert_raises(TypeError, _distr_gen, **dct)

    def test_shapes_identifiers_1(self):
        # shapes must be a comma-separated list of valid python identifiers
        dct = dict(name='dummy', shapes='(!)')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_identifiers_2(self):
        dct = dict(name='dummy', shapes='4chan')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_identifiers_3(self):
        dct = dict(name='dummy', shapes='m(fti)')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_identifiers_nodefaults(self):
        dct = dict(name='dummy', shapes='a=2')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_args(self):
        dct = dict(name='dummy', shapes='*args')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_kwargs(self):
        dct = dict(name='dummy', shapes='**kwargs')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_keywords(self):
        # python keywords cannot be used for shape parameters
        dct = dict(name='dummy', shapes='a, b, c, lambda')
        assert_raises(SyntaxError, _distr_gen, **dct)

    def test_shapes_signature(self):
        # test explicit shapes which agree w/ the signature of _pdf
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, a):
                return stats.norm._pdf(x) * a

        dist = _dist_gen(shapes='a')
        assert_equal(dist.pdf(0.5, a=2), stats.norm.pdf(0.5)*2)

    def test_shapes_signature_inconsistent(self):
        # test explicit shapes which do not agree w/ the signature of _pdf
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, a):
                return stats.norm._pdf(x) * a

        dist = _dist_gen(shapes='a, b')
        assert_raises(TypeError, dist.pdf, 0.5, **dict(a=1, b=2))

    def test_star_args(self):
        # test _pdf with only starargs
        # NB: **kwargs of pdf will never reach _pdf
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, *args):
                extra_kwarg = args[0]
                return stats.norm._pdf(x) * extra_kwarg

        dist = _dist_gen(shapes='extra_kwarg')
        assert_equal(dist.pdf(0.5, extra_kwarg=33), stats.norm.pdf(0.5)*33)
        assert_equal(dist.pdf(0.5, 33), stats.norm.pdf(0.5)*33)
        assert_raises(TypeError, dist.pdf, 0.5, **dict(xxx=33))

    def test_star_args_2(self):
        # test _pdf with named & starargs
        # NB: **kwargs of pdf will never reach _pdf
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, offset, *args):
                extra_kwarg = args[0]
                return stats.norm._pdf(x) * extra_kwarg + offset

        dist = _dist_gen(shapes='offset, extra_kwarg')
        assert_equal(dist.pdf(0.5, offset=111, extra_kwarg=33),
                     stats.norm.pdf(0.5)*33 + 111)
        assert_equal(dist.pdf(0.5, 111, 33),
                     stats.norm.pdf(0.5)*33 + 111)

    def test_extra_kwarg(self):
        # **kwargs to _pdf are ignored.
        # this is a limitation of the framework (_pdf(x, *goodargs))
        class _distr_gen(stats.rv_continuous):
            def _pdf(self, x, *args, **kwargs):
                # _pdf should handle *args, **kwargs itself.  Here "handling" is
                # ignoring *args and looking for ``extra_kwarg`` and using that.
                extra_kwarg = kwargs.pop('extra_kwarg', 1)
                return stats.norm._pdf(x) * extra_kwarg

        dist = _distr_gen(shapes='extra_kwarg')
        assert_equal(dist.pdf(1, extra_kwarg=3), stats.norm.pdf(1))

    def shapes_empty_string(self):
        # shapes='' is equivalent to shapes=None
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x):
                return stats.norm.pdf(x)

        dist = _dist_gen(shapes='')
        assert_equal(dist.pdf(0.5), stats.norm.pdf(0.5))


class TestSubclassingNoShapes(TestCase):
    # Construct a distribution w/o explicit shapes parameter and test it.

    def test_only__pdf(self):
        dummy_distr = _distr_gen(name='dummy')
        assert_equal(dummy_distr.pdf(1, a=1), 42)

    def test_only__cdf(self):
        # _pdf is determined from _cdf by taking numerical derivative
        dummy_distr = _distr2_gen(name='dummy')
        assert_almost_equal(dummy_distr.pdf(1, a=1), 1)

    @dec.skipif(DOCSTRINGS_STRIPPED)
    def test_signature_inspection(self):
        # check that _pdf signature inspection works correctly, and is used in
        # the class docstring
        dummy_distr = _distr_gen(name='dummy')
        assert_equal(dummy_distr.numargs, 1)
        assert_equal(dummy_distr.shapes, 'a')
        res = re.findall('logpdf\(x, a, loc=0, scale=1\)',
                         dummy_distr.__doc__)
        assert_(len(res) == 1)

    @dec.skipif(DOCSTRINGS_STRIPPED)
    def test_signature_inspection_2args(self):
        # same for 2 shape params and both _pdf and _cdf defined
        dummy_distr = _distr6_gen(name='dummy')
        assert_equal(dummy_distr.numargs, 2)
        assert_equal(dummy_distr.shapes, 'a, b')
        res = re.findall('logpdf\(x, a, b, loc=0, scale=1\)',
                         dummy_distr.__doc__)
        assert_(len(res) == 1)

    def test_signature_inspection_2args_incorrect_shapes(self):
        # both _pdf and _cdf defined, but shapes are inconsistent: raises
        try:
            _distr3_gen(name='dummy')
        except TypeError:
            pass
        else:
            raise AssertionError('TypeError not raised.')

    def test_defaults_raise(self):
        # default arguments should raise
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, a=42):
                return 42
        assert_raises(TypeError, _dist_gen, **dict(name='dummy'))

    def test_starargs_raise(self):
        # without explicit shapes, *args are not allowed
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, a, *args):
                return 42
        assert_raises(TypeError, _dist_gen, **dict(name='dummy'))

    def test_kwargs_raise(self):
        # without explicit shapes, **kwargs are not allowed
        class _dist_gen(stats.rv_continuous):
            def _pdf(self, x, a, **kwargs):
                return 42
        assert_raises(TypeError, _dist_gen, **dict(name='dummy'))


@dec.skipif(DOCSTRINGS_STRIPPED)
def test_docstrings():
    badones = [',\s*,', '\(\s*,', '^\s*:']
    for distname in stats.__all__:
        dist = getattr(stats, distname)
        if isinstance(dist, (stats.rv_discrete, stats.rv_continuous)):
            for regex in badones:
                assert_(re.search(regex, dist.__doc__) is None)


def test_infinite_input():
    assert_almost_equal(stats.skellam.sf(np.inf, 10, 11), 0)
    assert_almost_equal(stats.ncx2._cdf(np.inf, 8, 0.1), 1)


if __name__ == "__main__":
    run_module_suite()