File: test_kdeoth.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (184 lines) | stat: -rw-r--r-- 6,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import division, print_function, absolute_import

from scipy import stats
import numpy as np
from numpy.testing import assert_almost_equal, assert_, assert_raises, \
    assert_array_almost_equal, assert_array_almost_equal_nulp, run_module_suite


def test_kde_1d():
    #some basic tests comparing to normal distribution
    np.random.seed(8765678)
    n_basesample = 500
    xn = np.random.randn(n_basesample)
    xnmean = xn.mean()
    xnstd = xn.std(ddof=1)

    # get kde for original sample
    gkde = stats.gaussian_kde(xn)

    # evaluate the density function for the kde for some points
    xs = np.linspace(-7,7,501)
    kdepdf = gkde.evaluate(xs)
    normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
    intervall = xs[1] - xs[0]

    assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
    prob1 = gkde.integrate_box_1d(xnmean, np.inf)
    prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
    assert_almost_equal(prob1, 0.5, decimal=1)
    assert_almost_equal(prob2, 0.5, decimal=1)
    assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
    assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)

    assert_almost_equal(gkde.integrate_kde(gkde),
                        (kdepdf**2).sum()*intervall, decimal=2)
    assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
                        (kdepdf*normpdf).sum()*intervall, decimal=2)


def test_kde_bandwidth_method():
    def scotts_factor(kde_obj):
        """Same as default, just check that it works."""
        return np.power(kde_obj.n, -1./(kde_obj.d+4))

    np.random.seed(8765678)
    n_basesample = 50
    xn = np.random.randn(n_basesample)

    # Default
    gkde = stats.gaussian_kde(xn)
    # Supply a callable
    gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
    # Supply a scalar
    gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)

    xs = np.linspace(-7,7,51)
    kdepdf = gkde.evaluate(xs)
    kdepdf2 = gkde2.evaluate(xs)
    assert_almost_equal(kdepdf, kdepdf2)
    kdepdf3 = gkde3.evaluate(xs)
    assert_almost_equal(kdepdf, kdepdf3)

    assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')


# Subclasses that should stay working (extracted from various sources).
# Unfortunately the earlier design of gaussian_kde made it necessary for users
# to create these kinds of subclasses, or call _compute_covariance() directly.

class _kde_subclass1(stats.gaussian_kde):
    def __init__(self, dataset):
        self.dataset = np.atleast_2d(dataset)
        self.d, self.n = self.dataset.shape
        self.covariance_factor = self.scotts_factor
        self._compute_covariance()


class _kde_subclass2(stats.gaussian_kde):
    def __init__(self, dataset):
        self.covariance_factor = self.scotts_factor
        super(_kde_subclass2, self).__init__(dataset)


class _kde_subclass3(stats.gaussian_kde):
    def __init__(self, dataset, covariance):
        self.covariance = covariance
        stats.gaussian_kde.__init__(self, dataset)

    def _compute_covariance(self):
        self.inv_cov = np.linalg.inv(self.covariance)
        self._norm_factor = np.sqrt(np.linalg.det(2*np.pi * self.covariance)) \
                                   * self.n


class _kde_subclass4(stats.gaussian_kde):
    def covariance_factor(self):
        return 0.5 * self.silverman_factor()


def test_gaussian_kde_subclassing():
    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
    xs = np.linspace(-10, 10, num=50)

    # gaussian_kde itself
    kde = stats.gaussian_kde(x1)
    ys = kde(xs)

    # subclass 1
    kde1 = _kde_subclass1(x1)
    y1 = kde1(xs)
    assert_array_almost_equal_nulp(ys, y1, nulp=10)

    # subclass 2
    kde2 = _kde_subclass2(x1)
    y2 = kde2(xs)
    assert_array_almost_equal_nulp(ys, y2, nulp=10)

    # subclass 3
    kde3 = _kde_subclass3(x1, kde.covariance)
    y3 = kde3(xs)
    assert_array_almost_equal_nulp(ys, y3, nulp=10)

    # subclass 4
    kde4 = _kde_subclass4(x1)
    y4 = kde4(x1)
    y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017]

    assert_array_almost_equal(y_expected, y4, decimal=6)

    # Not a subclass, but check for use of _compute_covariance()
    kde5 = kde
    kde5.covariance_factor = lambda: kde.factor
    kde5._compute_covariance()
    y5 = kde5(xs)
    assert_array_almost_equal_nulp(ys, y5, nulp=10)


def test_gaussian_kde_covariance_caching():
    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
    xs = np.linspace(-10, 10, num=5)
    # These expected values are from scipy 0.10, before some changes to
    # gaussian_kde.  They were not compared with any external reference.
    y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475]

    # Set the bandwidth, then reset it to the default.
    kde = stats.gaussian_kde(x1)
    kde.set_bandwidth(bw_method=0.5)
    kde.set_bandwidth(bw_method='scott')
    y2 = kde(xs)

    assert_array_almost_equal(y_expected, y2, decimal=7)


def test_gaussian_kde_monkeypatch():
    """Ugly, but people may rely on this.  See scipy pull request 123,
    specifically the linked ML thread "Width of the Gaussian in stats.kde".
    If it is necessary to break this later on, that is to be discussed on ML.
    """
    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
    xs = np.linspace(-10, 10, num=50)

    # The old monkeypatched version to get at Silverman's Rule.
    kde = stats.gaussian_kde(x1)
    kde.covariance_factor = kde.silverman_factor
    kde._compute_covariance()
    y1 = kde(xs)

    # The new saner version.
    kde2 = stats.gaussian_kde(x1, bw_method='silverman')
    y2 = kde2(xs)

    assert_array_almost_equal_nulp(y1, y2, nulp=10)


def test_kde_integer_input():
    """Regression test for #1181."""
    x1 = np.arange(5)
    kde = stats.gaussian_kde(x1)
    y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721]
    assert_array_almost_equal(kde(x1), y_expected, decimal=6)


if __name__ == "__main__":
    run_module_suite()