File: test_morestats.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (906 lines) | stat: -rw-r--r-- 34,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
# Author:  Travis Oliphant, 2002
#
# Further enhancements and tests added by numerous SciPy developers.
#
from __future__ import division, print_function, absolute_import

import warnings

import numpy as np
from numpy.random import RandomState
from numpy.testing import (TestCase, run_module_suite, assert_array_equal,
    assert_almost_equal, assert_array_less, assert_array_almost_equal,
    assert_raises, assert_, assert_allclose, assert_equal, dec, assert_warns)

from scipy import stats

# Matplotlib is not a scipy dependency but is optionally used in probplot, so
# check if it's available
try:
    import matplotlib.pyplot as plt
    have_matplotlib = True
except:
    have_matplotlib = False


g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]


class TestShapiro(TestCase):
    def test_basic(self):
        x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
              4.43,0.21,4.75,0.71,1.52,3.24,
              0.93,0.42,4.97,9.53,4.55,0.47,6.66]
        w,pw = stats.shapiro(x1)
        assert_almost_equal(w,0.90047299861907959,6)
        assert_almost_equal(pw,0.042089745402336121,6)
        x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
              3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
              0.08,3.67,2.81,3.49]
        w,pw = stats.shapiro(x2)
        assert_almost_equal(w,0.9590270,6)
        assert_almost_equal(pw,0.52460,3)

    def test_bad_arg(self):
        # Length of x is less than 3.
        x = [1]
        assert_raises(ValueError, stats.shapiro, x)


class TestAnderson(TestCase):
    def test_normal(self):
        rs = RandomState(1234567890)
        x1 = rs.standard_exponential(size=50)
        x2 = rs.standard_normal(size=50)
        A,crit,sig = stats.anderson(x1)
        assert_array_less(crit[:-1], A)
        A,crit,sig = stats.anderson(x2)
        assert_array_less(A, crit[-2:])

    def test_expon(self):
        rs = RandomState(1234567890)
        x1 = rs.standard_exponential(size=50)
        x2 = rs.standard_normal(size=50)
        A,crit,sig = stats.anderson(x1,'expon')
        assert_array_less(A, crit[-2:])
        olderr = np.seterr(all='ignore')
        try:
            A,crit,sig = stats.anderson(x2,'expon')
        finally:
            np.seterr(**olderr)
        assert_(A > crit[-1])

    def test_bad_arg(self):
        assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')


class TestAndersonKSamp(TestCase):
    def test_example1a(self):
        # Example data from Scholz & Stephens (1987), originally
        # published in Lehmann (1995, Nonparametrics, Statistical
        # Methods Based on Ranks, p. 309)
        # Pass a mixture of lists and arrays
        t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
        t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
        t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
        t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
        assert_warns(UserWarning, stats.anderson_ksamp, (t1, t2, t3, t4),
                     midrank=False)
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', message='approximate p-value')
            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)

        assert_almost_equal(Tk, 4.449, 3)
        assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
                                  tm, 4)
        assert_almost_equal(p, 0.0021, 4)

    def test_example1b(self):
        # Example data from Scholz & Stephens (1987), originally
        # published in Lehmann (1995, Nonparametrics, Statistical
        # Methods Based on Ranks, p. 309)
        # Pass arrays
        t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0])
        t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
        t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
        t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', message='approximate p-value')
            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True)

        assert_almost_equal(Tk, 4.480, 3)
        assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
                                  tm, 4)
        assert_almost_equal(p, 0.0020, 4)

    def test_example2a(self):
        # Example data taken from an earlier technical report of
        # Scholz and Stephens
        # Pass lists instead of arrays
        t1 = [194, 15, 41, 29, 33, 181]
        t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
        t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
        t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
              118, 25, 156, 310, 76, 26, 44, 23, 62]
        t5 = [130, 208, 70, 101, 208]
        t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
        t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
        t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
              12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
        t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
              54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
        t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
               22, 139, 210, 97, 30, 23, 13, 14]
        t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
        t12 = [50, 254, 5, 283, 35, 12]
        t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
        t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
               61, 34]
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', message='approximate p-value')
            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
                                              t9, t10, t11, t12, t13, t14),
                                             midrank=False)

        assert_almost_equal(Tk, 3.288, 3)
        assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
                                  tm, 4)
        assert_almost_equal(p, 0.0041, 4)

    def test_example2b(self):
        # Example data taken from an earlier technical report of
        # Scholz and Stephens
        t1 = [194, 15, 41, 29, 33, 181]
        t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
        t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
        t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
              118, 25, 156, 310, 76, 26, 44, 23, 62]
        t5 = [130, 208, 70, 101, 208]
        t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
        t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
        t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
              12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
        t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
              54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
        t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
               22, 139, 210, 97, 30, 23, 13, 14]
        t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
        t12 = [50, 254, 5, 283, 35, 12]
        t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
        t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
               61, 34]
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', message='approximate p-value')
            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
                                              t9, t10, t11, t12, t13, t14),
                                             midrank=True)

        assert_almost_equal(Tk, 3.294, 3)
        assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
                                  tm, 4)
        assert_almost_equal(p, 0.0041, 4)

    def test_not_enough_samples(self):
        assert_raises(ValueError, stats.anderson_ksamp, np.ones(5))

    def test_no_distinct_observations(self):
        assert_raises(ValueError, stats.anderson_ksamp,
                      (np.ones(5), np.ones(5)))

    def test_empty_sample(self):
        assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), []))


class TestAnsari(TestCase):

    def test_small(self):
        x = [1,2,3,3,4]
        y = [3,2,6,1,6,1,4,1]
        W, pval = stats.ansari(x,y)
        assert_almost_equal(W,23.5,11)
        assert_almost_equal(pval,0.13499256881897437,11)

    def test_approx(self):
        ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
                           101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
        parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
                           100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))

        with warnings.catch_warnings():
            warnings.filterwarnings('ignore',
                        message="Ties preclude use of exact statistic.")
            W, pval = stats.ansari(ramsay, parekh)

        assert_almost_equal(W,185.5,11)
        assert_almost_equal(pval,0.18145819972867083,11)

    def test_exact(self):
        W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
        assert_almost_equal(W,10.0,11)
        assert_almost_equal(pval,0.533333333333333333,7)

    def test_bad_arg(self):
        assert_raises(ValueError, stats.ansari, [], [1])
        assert_raises(ValueError, stats.ansari, [1], [])


class TestBartlett(TestCase):

    def test_data(self):
        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
        T, pval = stats.bartlett(*args)
        assert_almost_equal(T,20.78587342806484,7)
        assert_almost_equal(pval,0.0136358632781,7)

    def test_bad_arg(self):
        # Too few args raises ValueError.
        assert_raises(ValueError, stats.bartlett, [1])


class TestLevene(TestCase):

    def test_data(self):
        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
        W, pval = stats.levene(*args)
        assert_almost_equal(W,1.7059176930008939,7)
        assert_almost_equal(pval,0.0990829755522,7)

    def test_trimmed1(self):
        # Test that center='trimmed' gives the same result as center='mean'
        # when proportiontocut=0.
        W1, pval1 = stats.levene(g1, g2, g3, center='mean')
        W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        np.random.seed(1234)
        x2 = np.random.permutation(x)

        # Use center='trimmed'
        W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
        W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(W0, W2)
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_equal_mean_median(self):
        x = np.linspace(-1,1,21)
        np.random.seed(1234)
        x2 = np.random.permutation(x)
        y = x**3
        W1, pval1 = stats.levene(x, y, center='mean')
        W2, pval2 = stats.levene(x2, y, center='median')
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_bad_keyword(self):
        x = np.linspace(-1,1,21)
        assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)

    def test_bad_center_value(self):
        x = np.linspace(-1,1,21)
        assert_raises(ValueError, stats.levene, x, x, center='trim')

    def test_too_few_args(self):
        assert_raises(ValueError, stats.levene, [1])


class TestBinomP(TestCase):

    def test_data(self):
        pval = stats.binom_test(100,250)
        assert_almost_equal(pval,0.0018833009350757682,11)
        pval = stats.binom_test(201,405)
        assert_almost_equal(pval,0.92085205962670713,11)
        pval = stats.binom_test([682,243],p=3.0/4)
        assert_almost_equal(pval,0.38249155957481695,11)

    def test_bad_len_x(self):
        # Length of x must be 1 or 2.
        assert_raises(ValueError, stats.binom_test, [1,2,3])

    def test_bad_n(self):
        # len(x) is 1, but n is invalid.
        # Missing n
        assert_raises(ValueError, stats.binom_test, [100])
        # n less than x[0]
        assert_raises(ValueError, stats.binom_test, [100], n=50)

    def test_bad_p(self):
        assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)


class TestFindRepeats(TestCase):

    def test_basic(self):
        a = [1,2,3,4,1,2,3,4,1,2,5]
        res,nums = stats.find_repeats(a)
        assert_array_equal(res,[1,2,3,4])
        assert_array_equal(nums,[3,3,2,2])

    def test_empty_result(self):
        # Check that empty arrays are returned when there are no repeats.
        a = [10, 20, 50, 30, 40]
        repeated, counts = stats.find_repeats(a)
        assert_array_equal(repeated, [])
        assert_array_equal(counts, [])


class TestFligner(TestCase):

    def test_data(self):
        # numbers from R: fligner.test in package stats
        x1 = np.arange(5)
        assert_array_almost_equal(stats.fligner(x1,x1**2),
                           (3.2282229927203536, 0.072379187848207877), 11)

    def test_trimmed1(self):
        # Test that center='trimmed' gives the same result as center='mean'
        # when proportiontocut=0.
        Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
        Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
        assert_almost_equal(Xsq1, Xsq2)
        assert_almost_equal(pval1, pval2)

    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        # Use center='trimmed'
        Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(Xsq1, Xsq2)
        assert_almost_equal(pval1, pval2)

    # The following test looks reasonable at first, but fligner() uses the
    # function stats.rankdata(), and in one of the cases in this test,
    # there are ties, while in the other (because of normal rounding
    # errors) there are not.  This difference leads to differences in the
    # third significant digit of W.
    #
    #def test_equal_mean_median(self):
    #    x = np.linspace(-1,1,21)
    #    y = x**3
    #    W1, pval1 = stats.fligner(x, y, center='mean')
    #    W2, pval2 = stats.fligner(x, y, center='median')
    #    assert_almost_equal(W1, W2)
    #    assert_almost_equal(pval1, pval2)

    def test_bad_keyword(self):
        x = np.linspace(-1,1,21)
        assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)

    def test_bad_center_value(self):
        x = np.linspace(-1,1,21)
        assert_raises(ValueError, stats.fligner, x, x, center='trim')

    def test_bad_num_args(self):
        # Too few args raises ValueError.
        assert_raises(ValueError, stats.fligner, [1])


class TestMood(TestCase):
    def test_mood(self):
        # numbers from R: mood.test in package stats
        x1 = np.arange(5)
        assert_array_almost_equal(stats.mood(x1, x1**2),
                                  (-1.3830857299399906, 0.16663858066771478), 11)

    def test_mood_order_of_args(self):
        # z should change sign when the order of arguments changes, pvalue
        # should not change
        np.random.seed(1234)
        x1 = np.random.randn(10, 1)
        x2 = np.random.randn(15, 1)
        z1, p1 = stats.mood(x1, x2)
        z2, p2 = stats.mood(x2, x1)
        assert_array_almost_equal([z1, p1], [-z2, p2])

    def test_mood_with_axis_none(self):
        #Test with axis = None, compare with results from R
        x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047,
               1.59528080213779, 0.329507771815361, -0.820468384118015,
               0.487429052428485, 0.738324705129217, 0.575781351653492,
              -0.305388387156356, 1.51178116845085, 0.389843236411431,
              -0.621240580541804, -2.2146998871775, 1.12493091814311,
              -0.0449336090152309, -0.0161902630989461, 0.943836210685299,
               0.821221195098089, 0.593901321217509]

        x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882,
              -1.13037567424629, -0.0802517565509893, 0.132420284381094,
               0.707954729271733, -0.23969802417184, 1.98447393665293,
              -0.138787012119665, 0.417650750792556, 0.981752777463662,
              -0.392695355503813, -1.03966897694891, 1.78222896030858,
              -2.31106908460517, 0.878604580921265, 0.035806718015226,
               1.01282869212708, 0.432265154539617, 2.09081920524915,
              -1.19992581964387, 1.58963820029007, 1.95465164222325,
               0.00493777682814261, -2.45170638784613, 0.477237302613617,
              -0.596558168631403, 0.792203270299649, 0.289636710177348]

        x1 = np.array(x1)
        x2 = np.array(x2)
        x1.shape = (10, 2)
        x2.shape = (15, 2)
        assert_array_almost_equal(stats.mood(x1, x2, axis=None),
                                  [-1.31716607555, 0.18778296257])

    def test_mood_2d(self):
        # Test if the results of mood test in 2-D case are consistent with the
        # R result for the same inputs.  Numbers from R mood.test().
        ny = 5
        np.random.seed(1234)
        x1 = np.random.randn(10, ny)
        x2 = np.random.randn(15, ny)
        z_vectest, pval_vectest = stats.mood(x1, x2)

        for j in range(ny):
            assert_array_almost_equal([z_vectest[j], pval_vectest[j]],
                                      stats.mood(x1[:, j], x2[:, j]))

        # inverse order of dimensions
        x1 = x1.transpose()
        x2 = x2.transpose()
        z_vectest, pval_vectest = stats.mood(x1, x2, axis=1)

        for i in range(ny):
            # check axis handling is self consistent
            assert_array_almost_equal([z_vectest[i], pval_vectest[i]],
                                      stats.mood(x1[i, :], x2[i, :]))

    def test_mood_3d(self):
        shape = (10, 5, 6)
        np.random.seed(1234)
        x1 = np.random.randn(*shape)
        x2 = np.random.randn(*shape)

        for axis in range(3):
            z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis)
            # Tests that result for 3-D arrays is equal to that for the
            # same calculation on a set of 1-D arrays taken from the
            # 3-D array
            axes_idx = ([1, 2], [0, 2], [0, 1])  # the two axes != axis
            for i in range(shape[axes_idx[axis][0]]):
                for j in range(shape[axes_idx[axis][1]]):
                    if axis == 0:
                        slice1 = x1[:, i, j]
                        slice2 = x2[:, i, j]
                    elif axis == 1:
                        slice1 = x1[i, :, j]
                        slice2 = x2[i, :, j]
                    else:
                        slice1 = x1[i, j, :]
                        slice2 = x2[i, j, :]

                    assert_array_almost_equal([z_vectest[i, j],
                                               pval_vectest[i, j]],
                                              stats.mood(slice1, slice2))

    def test_mood_bad_arg(self):
        # Raise ValueError when the sum of the lengths of the args is less than 3
        assert_raises(ValueError, stats.mood, [1], [])


class TestProbplot(TestCase):

    def test_basic(self):
        np.random.seed(12345)
        x = stats.norm.rvs(size=20)
        osm, osr = stats.probplot(x, fit=False)
        osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575,
                        -0.73908135, -0.5857176, -0.44506467, -0.31273668,
                        -0.18568928, -0.06158146, 0.06158146, 0.18568928,
                        0.31273668, 0.44506467, 0.5857176, 0.73908135,
                        0.91222575, 1.11829229, 1.38768012, 1.8241636]
        assert_allclose(osr, np.sort(x))
        assert_allclose(osm, osm_expected)

        res, res_fit = stats.probplot(x, fit=True)
        res_fit_expected = [1.05361841, 0.31297795, 0.98741609]
        assert_allclose(res_fit, res_fit_expected)

    def test_sparams_keyword(self):
        np.random.seed(123456)
        x = stats.norm.rvs(size=100)
        # Check that None, () and 0 (loc=0, for normal distribution) all work
        # and give the same results
        osm1, osr1 = stats.probplot(x, sparams=None, fit=False)
        osm2, osr2 = stats.probplot(x, sparams=0, fit=False)
        osm3, osr3 = stats.probplot(x, sparams=(), fit=False)
        assert_allclose(osm1, osm2)
        assert_allclose(osm1, osm3)
        assert_allclose(osr1, osr2)
        assert_allclose(osr1, osr3)
        # Check giving (loc, scale) params for normal distribution
        osm, osr = stats.probplot(x, sparams=(), fit=False)

    def test_dist_keyword(self):
        np.random.seed(12345)
        x = stats.norm.rvs(size=20)
        osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
        osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
        assert_allclose(osm1, osm2)
        assert_allclose(osr1, osr2)

        assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
        assert_raises(AttributeError, stats.probplot, x, dist=[])

        class custom_dist(object):
            """Some class that looks just enough like a distribution."""
            def ppf(self, q):
                return stats.norm.ppf(q, loc=2)

        osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
        osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
        assert_allclose(osm1, osm2)
        assert_allclose(osr1, osr2)

    @dec.skipif(not have_matplotlib)
    def test_plot_kwarg(self):
        np.random.seed(7654321)
        fig = plt.figure()
        fig.add_subplot(111)
        x = stats.t.rvs(3, size=100)
        res1, fitres1 = stats.probplot(x, plot=plt)
        plt.close()
        res2, fitres2 = stats.probplot(x, plot=None)
        res3 = stats.probplot(x, fit=False, plot=plt)
        plt.close()
        res4 = stats.probplot(x, fit=False, plot=None)
        # Check that results are consistent between combinations of `fit` and
        # `plot` keywords.
        assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
        assert_allclose(res1, res2)
        assert_allclose(res1, res3)
        assert_allclose(res1, res4)
        assert_allclose(fitres1, fitres2)

        # Check that a Matplotlib Axes object is accepted
        fig = plt.figure()
        ax = fig.add_subplot(111)
        stats.probplot(x, fit=False, plot=ax)
        plt.close()

    def test_probplot_bad_args(self):
        # Raise ValueError when given an invalid distribution.
        assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp")


def test_wilcoxon_bad_arg():
    # Raise ValueError when two args of different lengths are given or
    # zero_method is unknown.
    assert_raises(ValueError, stats.wilcoxon, [1], [1,2])
    assert_raises(ValueError, stats.wilcoxon, [1,2], [1,2], "dummy")


def test_mvsdist_bad_arg():
    # Raise ValueError if fewer than two data points are given.
    data = [1]
    assert_raises(ValueError, stats.mvsdist, data)


def test_kstat_bad_arg():
    # Raise ValueError if n > 4 or n > 1.
    data = [1]
    n = 10
    assert_raises(ValueError, stats.kstat, data, n=n)


def test_kstatvar_bad_arg():
    # Raise ValueError is n is not 1 or 2.
    data = [1]
    n = 10
    assert_raises(ValueError, stats.kstatvar, data, n=n)


def test_ppcc_max_bad_arg():
    # Raise ValueError when given an invalid distribution.
    data = [1]
    assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")


class TestBoxcox_llf(TestCase):

    def test_basic(self):
        np.random.seed(54321)
        x = stats.norm.rvs(size=10000, loc=10)
        lmbda = 1
        llf = stats.boxcox_llf(lmbda, x)
        llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2))
        assert_allclose(llf, llf_expected)

    def test_array_like(self):
        np.random.seed(54321)
        x = stats.norm.rvs(size=100, loc=10)
        lmbda = 1
        llf = stats.boxcox_llf(lmbda, x)
        llf2 = stats.boxcox_llf(lmbda, list(x))
        assert_allclose(llf, llf2, rtol=1e-12)

    def test_2d_input(self):
        # Note: boxcox_llf() was already working with 2-D input (sort of), so
        # keep it like that.  boxcox() doesn't work with 2-D input though, due
        # to brent() returning a scalar.
        np.random.seed(54321)
        x = stats.norm.rvs(size=100, loc=10)
        lmbda = 1
        llf = stats.boxcox_llf(lmbda, x)
        llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T)
        assert_allclose([llf, llf], llf2, rtol=1e-12)

    def test_empty(self):
        assert_(np.isnan(stats.boxcox_llf(1, [])))


class TestBoxcox(TestCase):

    def test_fixed_lmbda(self):
        np.random.seed(12345)
        x = stats.loggamma.rvs(5, size=50) + 5
        xt = stats.boxcox(x, lmbda=1)
        assert_allclose(xt, x - 1)
        xt = stats.boxcox(x, lmbda=-1)
        assert_allclose(xt, 1 - 1/x)

        xt = stats.boxcox(x, lmbda=0)
        assert_allclose(xt, np.log(x))

        # Also test that array_like input works
        xt = stats.boxcox(list(x), lmbda=0)
        assert_allclose(xt, np.log(x))

    def test_lmbda_None(self):
        np.random.seed(1234567)
        # Start from normal rv's, do inverse transform to check that
        # optimization function gets close to the right answer.
        np.random.seed(1245)
        lmbda = 2.5
        x = stats.norm.rvs(loc=10, size=50000)
        x_inv = (x * lmbda + 1)**(-lmbda)
        xt, maxlog = stats.boxcox(x_inv)

        assert_almost_equal(maxlog, -1 / lmbda, decimal=2)

    def test_alpha(self):
        np.random.seed(1234)
        x = stats.loggamma.rvs(5, size=50) + 5

        # Some regular values for alpha, on a small sample size
        _, _, interval = stats.boxcox(x, alpha=0.75)
        assert_allclose(interval, [4.004485780226041, 5.138756355035744])
        _, _, interval = stats.boxcox(x, alpha=0.05)
        assert_allclose(interval, [1.2138178554857557, 8.209033272375663])

        # Try some extreme values, see we don't hit the N=500 limit
        x = stats.loggamma.rvs(7, size=500) + 15
        _, _, interval = stats.boxcox(x, alpha=0.001)
        assert_allclose(interval, [0.3988867, 11.40553131])
        _, _, interval = stats.boxcox(x, alpha=0.999)
        assert_allclose(interval, [5.83316246, 5.83735292])

    def test_boxcox_bad_arg(self):
        # Raise ValueError if any data value is negative.
        x = np.array([-1])
        assert_raises(ValueError, stats.boxcox, x)

    def test_empty(self):
        assert_(stats.boxcox([]).shape == (0,))


class TestBoxcoxNormmax(TestCase):
    def setUp(self):
        np.random.seed(12345)
        self.x = stats.loggamma.rvs(5, size=50) + 5

    def test_pearsonr(self):
        maxlog = stats.boxcox_normmax(self.x)
        assert_allclose(maxlog, 1.804465, rtol=1e-6)

    def test_mle(self):
        maxlog = stats.boxcox_normmax(self.x, method='mle')
        assert_allclose(maxlog, 1.758101, rtol=1e-6)

        # Check that boxcox() uses 'mle'
        _, maxlog_boxcox = stats.boxcox(self.x)
        assert_allclose(maxlog_boxcox, maxlog)

    def test_all(self):
        maxlog_all = stats.boxcox_normmax(self.x, method='all')
        assert_allclose(maxlog_all, [1.804465, 1.758101], rtol=1e-6)


class TestBoxcoxNormplot(TestCase):
    def setUp(self):
        np.random.seed(7654321)
        self.x = stats.loggamma.rvs(5, size=500) + 5

    def test_basic(self):
        N = 5
        lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N)
        ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057,
                         0.95843297]
        assert_allclose(lmbdas, np.linspace(-10, 10, num=N))
        assert_allclose(ppcc, ppcc_expected)

    @dec.skipif(not have_matplotlib)
    def test_plot_kwarg(self):
        # Check with the matplotlib.pyplot module
        fig = plt.figure()
        fig.add_subplot(111)
        stats.boxcox_normplot(self.x, -20, 20, plot=plt)
        plt.close()

        # Check that a Matplotlib Axes object is accepted
        fig.add_subplot(111)
        ax = fig.add_subplot(111)
        stats.boxcox_normplot(self.x, -20, 20, plot=ax)
        plt.close()

    def test_invalid_inputs(self):
        # `lb` has to be larger than `la`
        assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0)
        # `x` can not contain negative values
        assert_raises(ValueError, stats.boxcox_normplot, [-1, 1] , 0, 1)

    def test_empty(self):
        assert_(stats.boxcox_normplot([], 0, 1).size == 0)


class TestCircFuncs(TestCase):
    def test_circfuncs(self):
        x = np.array([355,5,2,359,10,350])
        M = stats.circmean(x, high=360)
        Mval = 0.167690146
        assert_allclose(M, Mval, rtol=1e-7)

        V = stats.circvar(x, high=360)
        Vval = 42.51955609
        assert_allclose(V, Vval, rtol=1e-7)

        S = stats.circstd(x, high=360)
        Sval = 6.520702116
        assert_allclose(S, Sval, rtol=1e-7)

    def test_circfuncs_small(self):
        x = np.array([20,21,22,18,19,20.5,19.2])
        M1 = x.mean()
        M2 = stats.circmean(x, high=360)
        assert_allclose(M2, M1, rtol=1e-5)

        V1 = x.var()
        V2 = stats.circvar(x, high=360)
        assert_allclose(V2, V1, rtol=1e-4)

        S1 = x.std()
        S2 = stats.circstd(x, high=360)
        assert_allclose(S2, S1, rtol=1e-4)

    def test_circmean_axis(self):
        x = np.array([[355,5,2,359,10,350],
                      [351,7,4,352,9,349],
                      [357,9,8,358,4,356]])
        M1 = stats.circmean(x, high=360)
        M2 = stats.circmean(x.ravel(), high=360)
        assert_allclose(M1, M2, rtol=1e-14)

        M1 = stats.circmean(x, high=360, axis=1)
        M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])]
        assert_allclose(M1, M2, rtol=1e-14)

        M1 = stats.circmean(x, high=360, axis=0)
        M2 = [stats.circmean(x[:,i], high=360) for i in range(x.shape[1])]
        assert_allclose(M1, M2, rtol=1e-14)

    def test_circvar_axis(self):
        x = np.array([[355,5,2,359,10,350],
                      [351,7,4,352,9,349],
                  [357,9,8,358,4,356]])

        V1 = stats.circvar(x, high=360)
        V2 = stats.circvar(x.ravel(), high=360)
        assert_allclose(V1, V2, rtol=1e-11)

        V1 = stats.circvar(x, high=360, axis=1)
        V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])]
        assert_allclose(V1, V2, rtol=1e-11)

        V1 = stats.circvar(x, high=360, axis=0)
        V2 = [stats.circvar(x[:,i], high=360) for i in range(x.shape[1])]
        assert_allclose(V1, V2, rtol=1e-11)

    def test_circstd_axis(self):
        x = np.array([[355,5,2,359,10,350],
                      [351,7,4,352,9,349],
                      [357,9,8,358,4,356]])

        S1 = stats.circstd(x, high=360)
        S2 = stats.circstd(x.ravel(), high=360)
        assert_allclose(S1, S2, rtol=1e-11)

        S1 = stats.circstd(x, high=360, axis=1)
        S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])]
        assert_allclose(S1, S2, rtol=1e-11)

        S1 = stats.circstd(x, high=360, axis=0)
        S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])]
        assert_allclose(S1, S2, rtol=1e-11)

    def test_circfuncs_array_like(self):
        x = [355,5,2,359,10,350]
        assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7)
        assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7)
        assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)

    def test_empty(self):
        assert_(np.isnan(stats.circmean([])))
        assert_(np.isnan(stats.circstd([])))
        assert_(np.isnan(stats.circvar([])))


def test_accuracy_wilcoxon():
    freq = [1, 4, 16, 15, 8, 4, 5, 1, 2]
    nums = range(-4, 5)
    x = np.concatenate([[u] * v for u, v in zip(nums, freq)])
    y = np.zeros(x.size)

    T, p = stats.wilcoxon(x, y, "pratt")
    assert_allclose(T, 423)
    assert_allclose(p, 0.00197547303533107)

    T, p = stats.wilcoxon(x, y, "zsplit")
    assert_allclose(T, 441)
    assert_allclose(p, 0.0032145343172473055)

    T, p = stats.wilcoxon(x, y, "wilcox")
    assert_allclose(T, 327)
    assert_allclose(p, 0.00641346115861)

    # Test the 'correction' option, using values computed in R with:
    # > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE})
    x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112])
    y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187])
    T, p = stats.wilcoxon(x, y, correction=False)
    assert_equal(T, 34)
    assert_allclose(p, 0.6948866, rtol=1e-6)
    T, p = stats.wilcoxon(x, y, correction=True)
    assert_equal(T, 34)
    assert_allclose(p, 0.7240817, rtol=1e-6)


def test_wilcoxon_tie():
    # Regression test for gh-2391.
    # Corresponding R code is:
    #   > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE)
    #   > result$p.value
    #   [1] 0.001565402
    #   > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE)
    #   > result$p.value
    #   [1] 0.001904195
    stat, p = stats.wilcoxon([0.1] * 10)
    expected_p = 0.001565402
    assert_equal(stat, 0)
    assert_allclose(p, expected_p, rtol=1e-6)

    stat, p = stats.wilcoxon([0.1] * 10, correction=True)
    expected_p = 0.001904195
    assert_equal(stat, 0)
    assert_allclose(p, expected_p, rtol=1e-6)


if __name__ == "__main__":
    run_module_suite()