1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
"""
Test functions for multivariate normal distributions.
"""
from __future__ import division, print_function, absolute_import
from numpy.testing import (assert_almost_equal,
run_module_suite, assert_allclose, assert_equal, assert_raises)
import numpy
import numpy as np
import scipy.linalg
import scipy.stats._multivariate
from scipy.stats import multivariate_normal
from scipy.stats import norm
from scipy.stats._multivariate import _psd_pinv_decomposed_log_pdet
from scipy.integrate import romb
def test_scalar_values():
np.random.seed(1234)
# When evaluated on scalar data, the pdf should return a scalar
x, mean, cov = 1.5, 1.7, 2.5
pdf = multivariate_normal.pdf(x, mean, cov)
assert_equal(pdf.ndim, 0)
# When evaluated on a single vector, the pdf should return a scalar
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix
pdf = multivariate_normal.pdf(x, mean, cov)
assert_equal(pdf.ndim, 0)
def test_logpdf():
# Check that the log of the pdf is in fact the logpdf
np.random.seed(1234)
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5))
d1 = multivariate_normal.logpdf(x, mean, cov)
d2 = multivariate_normal.pdf(x, mean, cov)
assert_allclose(d1, np.log(d2))
def test_large_pseudo_determinant():
# Check that large pseudo-determinants are handled appropriately.
# Construct a singular diagonal covariance matrix
# whose pseudo determinant overflows double precision.
large_total_log = 1000.0
npos = 100
nzero = 2
large_entry = np.exp(large_total_log / npos)
n = npos + nzero
cov = np.zeros((n, n), dtype=float)
np.fill_diagonal(cov, large_entry)
cov[-nzero:, -nzero:] = 0
# Check some determinants.
assert_equal(scipy.linalg.det(cov), 0)
assert_equal(scipy.linalg.det(cov[:npos, :npos]), np.inf)
# np.linalg.slogdet is only available in numpy 1.6+
# but scipy currently supports numpy 1.5.1.
#assert_allclose(np.linalg.slogdet(cov[:npos, :npos]), (1, large_total_log))
# Check the pseudo-determinant.
U, log_pdet = scipy.stats._multivariate._psd_pinv_decomposed_log_pdet(cov)
assert_allclose(log_pdet, large_total_log)
def test_broadcasting():
np.random.seed(1234)
n = 4
# Construct a random covariance matrix.
data = np.random.randn(n, n)
cov = np.dot(data, data.T)
mean = np.random.randn(n)
# Construct an ndarray which can be interpreted as
# a 2x3 array whose elements are random data vectors.
X = np.random.randn(2, 3, n)
# Check that multiple data points can be evaluated at once.
for i in range(2):
for j in range(3):
actual = multivariate_normal.pdf(X[i, j], mean, cov)
desired = multivariate_normal.pdf(X, mean, cov)[i, j]
assert_allclose(actual, desired)
def test_normal_1D():
# The probability density function for a 1D normal variable should
# agree with the standard normal distribution in scipy.stats.distributions
x = np.linspace(0, 2, 10)
mean, cov = 1.2, 0.9
scale = cov**0.5
d1 = norm.pdf(x, mean, scale)
d2 = multivariate_normal.pdf(x, mean, cov)
assert_allclose(d1, d2)
def test_marginalization():
# Integrating out one of the variables of a 2D Gaussian should
# yield a 1D Gaussian
mean = np.array([2.5, 3.5])
cov = np.array([[.5, 0.2], [0.2, .6]])
n = 2**8 + 1 # Number of samples
delta = 6 / (n - 1) # Grid spacing
v = np.linspace(0, 6, n)
xv, yv = np.meshgrid(v, v)
pos = np.empty((n, n, 2))
pos[:, :, 0] = xv
pos[:, :, 1] = yv
pdf = multivariate_normal.pdf(pos, mean, cov)
# Marginalize over x and y axis
margin_x = romb(pdf, delta, axis=0)
margin_y = romb(pdf, delta, axis=1)
# Compare with standard normal distribution
gauss_x = norm.pdf(v, loc=mean[0], scale=cov[0, 0]**0.5)
gauss_y = norm.pdf(v, loc=mean[1], scale=cov[1, 1]**0.5)
assert_allclose(margin_x, gauss_x, rtol=1e-2, atol=1e-2)
assert_allclose(margin_y, gauss_y, rtol=1e-2, atol=1e-2)
def test_frozen():
# The frozen distribution should agree with the regular one
np.random.seed(1234)
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5))
norm_frozen = multivariate_normal(mean, cov)
assert_allclose(norm_frozen.pdf(x), multivariate_normal.pdf(x, mean, cov))
assert_allclose(norm_frozen.logpdf(x),
multivariate_normal.logpdf(x, mean, cov))
def test_pseudodet_pinv():
# Make sure that pseudo-inverse and pseudo-det agree on cutoff
# Assemble random covariance matrix with large and small eigenvalues
np.random.seed(1234)
n = 7
x = np.random.randn(n, n)
cov = np.dot(x, x.T)
s, u = scipy.linalg.eigh(cov)
s = 0.5 * np.ones(n)
s[0] = 1.0
s[-1] = 1e-7
cov = np.dot(u, np.dot(np.diag(s), u.T))
# Set cond so that the lowest eigenvalue is below the cutoff
cond = 1e-5
U, log_pdet = _psd_pinv_decomposed_log_pdet(cov, cond)
pinv = np.dot(U, U.T)
_, log_pdet_pinv = _psd_pinv_decomposed_log_pdet(pinv, cond)
# Check that the log pseudo-determinant agrees with the sum
# of the logs of all but the smallest eigenvalue
assert_allclose(log_pdet, np.sum(np.log(s[:-1])))
# Check that the pseudo-determinant of the pseudo-inverse
# agrees with 1 / pseudo-determinant
assert_allclose(-log_pdet, log_pdet_pinv)
def test_exception_nonsquare_cov():
cov = [[1, 2, 3], [4, 5, 6]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov)
def test_exception_nonfinite_cov():
cov_nan = [[1, 0], [0, np.nan]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov_nan)
cov_inf = [[1, 0], [0, np.inf]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov_inf)
def test_exception_non_psd_cov():
cov = [[1, 0], [0, -1]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov)
def test_R_values():
# Compare the multivariate pdf with some values precomputed
# in R version 3.0.1 (2013-05-16) on Mac OS X 10.6.
# The values below were generated by the following R-script:
# > library(mnormt)
# > x <- seq(0, 2, length=5)
# > y <- 3*x - 2
# > z <- x + cos(y)
# > mu <- c(1, 3, 2)
# > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
# > r_pdf <- dmnorm(cbind(x,y,z), mu, Sigma)
r_pdf = np.array([0.0002214706, 0.0013819953, 0.0049138692,
0.0103803050, 0.0140250800])
x = np.linspace(0, 2, 5)
y = 3 * x - 2
z = x + np.cos(y)
r = np.array([x, y, z]).T
mean = np.array([1, 3, 2], 'd')
cov = np.array([[1, 2, 0], [2, 5, .5], [0, .5, 3]], 'd')
pdf = multivariate_normal.pdf(r, mean, cov)
assert_allclose(pdf, r_pdf, atol=1e-10)
def test_rvs_shape():
# Check that rvs parses the mean and covariance correctly, and returns
# an array of the right shape
N = 300
d = 4
sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N)
assert_equal(sample.shape, (N, d))
sample = multivariate_normal.rvs(mean=None,
cov=np.array([[2, .1], [.1, 1]]),
size=N)
assert_equal(sample.shape, (N, 2))
u = multivariate_normal(mean=0, cov=1)
sample = u.rvs(N)
assert_equal(sample.shape, (N, ))
def test_large_sample():
# Generate large sample and compare sample mean and sample covariance
# with mean and covariance matrix.
np.random.seed(2846)
n = 3
mean = np.random.randn(n)
M = np.random.randn(n, n)
cov = np.dot(M, M.T)
size = 5000
sample = multivariate_normal.rvs(mean, cov, size)
assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1)
assert_allclose(sample.mean(0), mean, rtol=1e-1)
def test_entropy():
np.random.seed(2846)
n = 3
mean = np.random.randn(n)
M = np.random.randn(n, n)
cov = np.dot(M, M.T)
rv = multivariate_normal(mean, cov)
# Check that frozen distribution agrees with entropy function
assert_almost_equal(rv.entropy(), multivariate_normal.entropy(mean, cov))
# Compare entropy with manually computed expression involving
# the sum of the logs of the eigenvalues of the covariance matrix
eigs = np.linalg.eig(cov)[0]
desired = 1/2 * (n * (np.log(2*np.pi) + 1) + np.sum(np.log(eigs)))
assert_almost_equal(desired, rv.entropy())
if __name__ == "__main__":
run_module_suite()
|