1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
from __future__ import absolute_import, print_function
import random
import parser
import numpy as np
from numpy.testing import TestCase, assert_array_equal, run_module_suite
from scipy.weave import size_check
from scipy.weave.ast_tools import harvest_variables
class TestMakeSameLength(TestCase):
def generic_check(self,x,y,desired):
actual = size_check.make_same_length(x,y)
desired = desired
assert_array_equal(actual,desired)
def test_scalar(self):
x,y = (),()
desired = np.array(()), np.array(())
self.generic_check(x,y,desired)
def test_x_scalar(self):
x,y = (),(1,2)
desired = np.array((1,1)), np.array((1,2))
self.generic_check(x,y,desired)
def test_y_scalar(self):
x,y = (1,2),()
desired = np.array((1,2)), np.array((1,1))
self.generic_check(x,y,desired)
def test_x_short(self):
x,y = (1,2),(1,2,3)
desired = np.array((1,1,2)), np.array((1,2,3))
self.generic_check(x,y,desired)
def test_y_short(self):
x,y = (1,2,3),(1,2)
desired = np.array((1,2,3)), np.array((1,1,2))
self.generic_check(x,y,desired)
class TestBinaryOpSize(TestCase):
def generic_check(self,x,y,desired):
actual = size_check.binary_op_size(x,y)
desired = desired
assert_array_equal(actual,desired)
def generic_error_check(self,x,y):
self.assertRaises(ValueError, size_check.binary_op_size, x, y)
def desired_type(self,val):
return np.array(val)
def test_scalar(self):
x,y = (),()
desired = self.desired_type(())
self.generic_check(x,y,desired)
def test_x1(self):
x,y = (1,),()
desired = self.desired_type((1,))
self.generic_check(x,y,desired)
def test_y1(self):
x,y = (),(1,)
desired = self.desired_type((1,))
self.generic_check(x,y,desired)
def test_x_y(self):
x,y = (5,),(5,)
desired = self.desired_type((5,))
self.generic_check(x,y,desired)
def test_x_y2(self):
x,y = (5,10),(5,10)
desired = self.desired_type((5,10))
self.generic_check(x,y,desired)
def test_x_y3(self):
x,y = (5,10),(1,10)
desired = self.desired_type((5,10))
self.generic_check(x,y,desired)
def test_x_y4(self):
x,y = (1,10),(5,10)
desired = self.desired_type((5,10))
self.generic_check(x,y,desired)
def test_x_y5(self):
x,y = (5,1),(1,10)
desired = self.desired_type((5,10))
self.generic_check(x,y,desired)
def test_x_y6(self):
x,y = (1,10),(5,1)
desired = self.desired_type((5,10))
self.generic_check(x,y,desired)
def test_x_y7(self):
x,y = (5,4,3,2,1),(3,2,1)
desired = self.desired_type((5,4,3,2,1))
self.generic_check(x,y,desired)
def test_error1(self):
x,y = (5,),(4,)
self.generic_error_check(x,y)
def test_error2(self):
x,y = (5,5),(4,5)
self.generic_error_check(x,y)
class TestDummyArray(TestBinaryOpSize):
def generic_check(self,x,y,desired):
if isinstance(x, tuple):
x = np.ones(x)
if isinstance(y, tuple):
y = np.ones(y)
xx = size_check.dummy_array(x)
yy = size_check.dummy_array(y)
ops = ['+', '-', '/', '*', '<<', '>>']
for op in ops:
actual = eval('xx' + op + 'yy')
desired = desired
assert_array_equal(actual,desired)
def desired_type(self,val):
return size_check.dummy_array(np.array(val),1)
class TestDummyArrayIndexing(TestCase):
def generic_check(self,ary,expr,desired):
a = size_check.dummy_array(ary)
actual = eval(expr).shape
assert_array_equal(actual,desired, expr)
def generic_wrap(self,a,expr):
desired = np.array(eval(expr).shape)
try:
self.generic_check(a,expr,desired)
except IndexError:
if 0 not in desired:
msg = '%s raised IndexError in dummy_array, but forms\n' \
'valid array shape -> %s' % (expr, str(desired))
raise AttributeError(msg)
def generic_1d(self,expr):
a = np.arange(10)
self.generic_wrap(a,expr)
def generic_2d(self,expr):
a = np.ones((10,20))
self.generic_wrap(a,expr)
def generic_3d(self,expr):
a = np.ones((10,20,1))
self.generic_wrap(a,expr)
def generic_1d_index(self,expr):
a = np.arange(10)
desired = np.array(())
self.generic_check(a,expr,desired)
def test_1d_index_0(self):
self.generic_1d_index('a[0]')
def test_1d_index_1(self):
self.generic_1d_index('a[4]')
def test_1d_index_2(self):
self.generic_1d_index('a[-4]')
def test_1d_index_3(self):
try:
self.generic_1d('a[12]')
except IndexError:
pass
def test_1d_index_calculated(self):
self.generic_1d_index('a[0+1]')
def test_1d_0(self):
self.generic_1d('a[:]')
def test_1d_1(self):
self.generic_1d('a[1:]')
def test_1d_2(self):
self.generic_1d('a[-1:]')
def test_1d_3(self):
self.generic_1d('a[-11:]')
def test_1d_4(self):
self.generic_1d('a[:1]')
def test_1d_5(self):
self.generic_1d('a[:-1]')
def test_1d_6(self):
self.generic_1d('a[:-11]')
def test_1d_7(self):
self.generic_1d('a[1:5]')
def test_1d_8(self):
self.generic_1d('a[1:-5]')
def test_1d_9(self):
# don't support zero length slicing at the moment.
try:
self.generic_1d('a[-1:-5]')
except IndexError:
pass
def test_1d_10(self):
self.generic_1d('a[-5:-1]')
def test_1d_stride_0(self):
self.generic_1d('a[::1]')
def test_1d_stride_1(self):
self.generic_1d('a[::-1]')
def test_1d_stride_2(self):
self.generic_1d('a[1::1]')
def test_1d_stride_3(self):
self.generic_1d('a[1::-1]')
def test_1d_stride_4(self):
# don't support zero length slicing at the moment.
try:
self.generic_1d('a[1:5:-1]')
except IndexError:
pass
def test_1d_stride_5(self):
self.generic_1d('a[5:1:-1]')
def test_1d_stride_6(self):
self.generic_1d('a[:4:1]')
def test_1d_stride_7(self):
self.generic_1d('a[:4:-1]')
def test_1d_stride_8(self):
self.generic_1d('a[:-4:1]')
def test_1d_stride_9(self):
self.generic_1d('a[:-4:-1]')
def test_1d_stride_10(self):
self.generic_1d('a[:-3:2]')
def test_1d_stride_11(self):
self.generic_1d('a[:-3:-2]')
def test_1d_stride_12(self):
self.generic_1d('a[:-3:-7]')
def test_1d_random(self):
# throw a bunch of different indexes at it for good measure.
choices = map(lambda x: repr(x),range(50)) + range(50) + ['']*50
for i in range(100):
try:
beg = random.choice(choices)
end = random.choice(choices)
step = random.choice(choices)
if step in ['0',0]:
step = 'None'
self.generic_1d('a[%s:%s:%s]' % (beg,end,step))
except IndexError:
pass
def test_2d_0(self):
self.generic_2d('a[:]')
def test_2d_1(self):
self.generic_2d('a[:2]')
def test_2d_2(self):
self.generic_2d('a[:,:]')
def test_2d_random(self):
# throw a bunch of different indexes at it for good measure.
choices = map(lambda x: repr(x),range(50)) + range(50) + ['']*50
for i in range(100):
try:
beg = random.choice(choices)
end = random.choice(choices)
step = random.choice(choices)
beg2 = random.choice(choices)
end2 = random.choice(choices)
step2 = random.choice(choices)
if step in ['0',0]:
step = 'None'
if step2 in ['0',0]:
step2 = 'None'
expr = 'a[%s:%s:%s,%s:%s:%s]' % (beg,end,step,beg2,end2,step2)
self.generic_2d(expr)
except IndexError:
pass
def test_3d_random(self):
# throw a bunch of different indexes at it for good measure.
choices = map(lambda x: repr(x),range(50)) + range(50) + ['']*50
for i in range(100):
try:
idx = []
for i in range(9):
val = random.choice(choices)
if (i+1) % 3 == 0 and val in ['0',0]:
val = 'None'
idx.append(val)
expr = 'a[%s:%s:%s,%s:%s:%s,%s:%s:%s]' % tuple(idx)
self.generic_3d(expr)
except IndexError:
pass
class TestReduction(TestCase):
def test_1d_0(self):
a = np.ones((5,))
actual = size_check.reduction(a,0)
desired = size_check.dummy_array((),1)
assert_array_equal(actual.shape,desired.shape)
def test_2d_0(self):
a = np.ones((5,10))
actual = size_check.reduction(a,0)
desired = size_check.dummy_array((10,),1)
assert_array_equal(actual.shape,desired.shape)
def test_2d_1(self):
a = np.ones((5,10))
actual = size_check.reduction(a,1)
desired = size_check.dummy_array((5,),1)
assert_array_equal(actual.shape,desired.shape)
def test_3d_0(self):
a = np.ones((5,6,7))
actual = size_check.reduction(a,1)
desired = size_check.dummy_array((5,7),1)
assert_array_equal(actual.shape,desired.shape)
def test_error0(self):
a = np.ones((5,))
try:
size_check.reduction(a,-2)
except ValueError:
pass
def test_error1(self):
a = np.ones((5,))
try:
size_check.reduction(a,1)
except ValueError:
pass
class TestExpressions(TestCase):
def generic_check(self,expr,desired,**kw):
ast_list = parser.expr(expr).tolist()
args = harvest_variables(ast_list)
loc = locals().update(kw)
for var in args:
s = '%s = size_check.dummy_array(%s)' % (var,var)
exec(s,loc)
try:
actual = eval(expr,locals()).shape
except:
actual = 'failed'
if actual is 'failed' and desired is 'failed':
return
assert_array_equal(actual,desired, expr)
def generic_wrap(self,expr,**kw):
try:
x = np.array(eval(expr,kw))
try:
desired = x.shape
except:
desired = np.zeros(())
except:
desired = 'failed'
self.generic_check(expr,desired,**kw)
def test_generic_1d(self):
a = np.arange(10)
expr = 'a[:]'
self.generic_wrap(expr,a=a)
expr = 'a[:] + a'
self.generic_wrap(expr,a=a)
bad_expr = 'a[4:] + a'
self.generic_wrap(bad_expr,a=a)
a = np.arange(10)
b = np.ones((1,10))
expr = 'a + b'
self.generic_wrap(expr,a=a,b=b)
bad_expr = 'a[:5] + b'
self.generic_wrap(bad_expr,a=a,b=b)
def test_single_index(self):
a = np.arange(10)
expr = 'a[5] + a[3]'
self.generic_wrap(expr,a=a)
def test_calculated_index(self):
a = np.arange(10)
nx = 0
expr = 'a[5] + a[nx+3]'
size_check.check_expr(expr,locals())
def test_calculated_index2(self):
a = np.arange(10)
nx = 0
expr = 'a[1:5] + a[nx+1:5+nx]'
size_check.check_expr(expr,locals())
def generic_2d(self,expr):
a = np.ones((10,20))
self.generic_wrap(a,expr)
def generic_3d(self,expr):
a = np.ones((10,20,1))
self.generic_wrap(a,expr)
if __name__ == "__main__":
run_module_suite()
|