1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
==========================
SciPy 0.12.0 Release Notes
==========================
.. contents::
SciPy 0.12.0 is the culmination of 7 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and
better documentation. There have been a number of deprecations and
API changes in this release, which are documented below. All users
are encouraged to upgrade to this release, as there are a large number
of bug-fixes and optimizations. Moreover, our development attention
will now shift to bug-fix releases on the 0.12.x branch, and on adding
new features on the master branch.
Some of the highlights of this release are:
- Completed QHull wrappers in scipy.spatial.
- cKDTree now a drop-in replacement for KDTree.
- A new global optimizer, basinhopping.
- Support for Python 2 and Python 3 from the same code base (no more 2to3).
This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater.
Support for Python 2.4 and 2.5 has been dropped as of this release.
New features
============
``scipy.spatial`` improvements
------------------------------
cKDTree feature-complete
^^^^^^^^^^^^^^^^^^^^^^^^
Cython version of KDTree, cKDTree, is now feature-complete. Most operations
(construction, query, query_ball_point, query_pairs, count_neighbors and
sparse_distance_matrix) are between 200 and 1000 times faster in cKDTree than
in KDTree. With very minor caveats, cKDTree has exactly the same interface as
KDTree, and can be used as a drop-in replacement.
Voronoi diagrams and convex hulls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`scipy.spatial` now contains functionality for computing Voronoi
diagrams and convex hulls using the Qhull library. (Delaunay
triangulation was available since Scipy 0.9.0.)
Delaunay improvements
^^^^^^^^^^^^^^^^^^^^^
It's now possible to pass in custom Qhull options in Delaunay
triangulation. Coplanar points are now also recorded, if present.
Incremental construction of Delaunay triangulations is now also
possible.
Spectral estimators (``scipy.signal``)
--------------------------------------
The functions ``scipy.signal.periodogram`` and ``scipy.signal.welch`` were
added, providing DFT-based spectral estimators.
``scipy.optimize`` improvements
-------------------------------
Callback functions in L-BFGS-B and TNC
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A callback mechanism was added to L-BFGS-B and TNC minimization solvers.
Basin hopping global optimization (``scipy.optimize.basinhopping``)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A new global optimization algorithm. Basinhopping is designed to efficiently
find the global minimum of a smooth function.
``scipy.special`` improvements
------------------------------
Revised complex error functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The computation of special functions related to the error function now uses a
new `Faddeeva library from MIT <http://ab-initio.mit.edu/Faddeeva>`__ which
increases their numerical precision. The scaled and imaginary error functions
``erfcx`` and ``erfi`` were also added, and the Dawson integral ``dawsn`` can
now be evaluated for a complex argument.
Faster orthogonal polynomials
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Evaluation of orthogonal polynomials (the ``eval_*`` routines) in now
faster in ``scipy.special``, and their ``out=`` argument functions
properly.
``scipy.sparse.linalg`` features
--------------------------------
- In ``scipy.sparse.linalg.spsolve``, the ``b`` argument can now be either
a vector or a matrix.
- ``scipy.sparse.linalg.inv`` was added. This uses ``spsolve`` to compute
a sparse matrix inverse.
- ``scipy.sparse.linalg.expm`` was added. This computes the exponential of
a sparse matrix using a similar algorithm to the existing dense array
implementation in ``scipy.linalg.expm``.
Listing Matlab(R) file contents in ``scipy.io``
-----------------------------------------------
A new function ``whosmat`` is available in ``scipy.io`` for inspecting contents
of MAT files without reading them to memory.
Documented BLAS and LAPACK low-level interfaces (``scipy.linalg``)
------------------------------------------------------------------
The modules `scipy.linalg.blas` and `scipy.linalg.lapack` can be used
to access low-level BLAS and LAPACK functions.
Polynomial interpolation improvements (``scipy.interpolate``)
-------------------------------------------------------------
The barycentric, Krogh, piecewise and pchip polynomial interpolators in
``scipy.interpolate`` accept now an ``axis`` argument.
Deprecated features
===================
`scipy.lib.lapack`
------------------
The module `scipy.lib.lapack` is deprecated. You can use `scipy.linalg.lapack`
instead. The module `scipy.lib.blas` was deprecated earlier in Scipy 0.10.0.
`fblas` and `cblas`
-------------------
Accessing the modules `scipy.linalg.fblas`, `cblas`, `flapack`, `clapack` is
deprecated. Instead, use the modules `scipy.linalg.lapack` and
`scipy.linalg.blas`.
Backwards incompatible changes
==============================
Removal of ``scipy.io.save_as_module``
--------------------------------------
The function ``scipy.io.save_as_module`` was deprecated in Scipy 0.11.0, and is
now removed.
Its private support modules ``scipy.io.dumbdbm_patched`` and
``scipy.io.dumb_shelve`` are also removed.
`axis` argument added to `scipy.stats.scoreatpercentile`
--------------------------------------------------------
The function `scipy.stats.scoreatpercentile` has been given an `axis`
argument. The default argument is `axis=None`, which means the calculation
is done on the flattened array. Before this change, `scoreatpercentile`
would act as if `axis=0` had been given. Code using `scoreatpercentile`
with a multidimensional array will need to add `axis=0` to the function call
to preserve the old behavior. (This API change was not noticed until
long after the release of 0.12.0.)
Authors
=======
* Anton Akhmerov +
* Alexander Eberspächer +
* Anne Archibald
* Jisk Attema +
* K.-Michael Aye +
* bemasc +
* Sebastian Berg +
* François Boulogne +
* Matthew Brett
* Lars Buitinck
* Steven Byrnes +
* Tim Cera +
* Christian +
* Keith Clawson +
* David Cournapeau
* Nathan Crock +
* endolith
* Bradley M. Froehle +
* Matthew R Goodman
* Christoph Gohlke
* Ralf Gommers
* Robert David Grant +
* Yaroslav Halchenko
* Charles Harris
* Jonathan Helmus
* Andreas Hilboll
* Hugo +
* Oleksandr Huziy
* Jeroen Demeyer +
* Johannes Schönberger +
* Steven G. Johnson +
* Chris Jordan-Squire
* Jonathan Taylor +
* Niklas Kroeger +
* Jerome Kieffer +
* kingson +
* Josh Lawrence
* Denis Laxalde
* Alex Leach +
* Tim Leslie
* Richard Lindsley +
* Lorenzo Luengo +
* Stephen McQuay +
* MinRK
* Sturla Molden +
* Eric Moore +
* mszep +
* Matt Newville +
* Vlad Niculae
* Travis Oliphant
* David Parker +
* Fabian Pedregosa
* Josef Perktold
* Zach Ploskey +
* Alex Reinhart +
* Gilles Rochefort +
* Ciro Duran Santillli +
* Jan Schlueter +
* Jonathan Scholz +
* Anthony Scopatz
* Skipper Seabold
* Fabrice Silva +
* Scott Sinclair
* Jacob Stevenson +
* Sturla Molden +
* Julian Taylor +
* thorstenkranz +
* John Travers +
* True Price +
* Nicky van Foreest
* Jacob Vanderplas
* Patrick Varilly
* Daniel Velkov +
* Pauli Virtanen
* Stefan van der Walt
* Warren Weckesser
A total of 75 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
|