1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
.. _continuous-frechet_l:
Fréchet (left-skewed, Extreme Value Type III, Weibull maximum) Distribution
============================================================================
Defined for :math:`x<0` and :math:`c>0` .
.. math::
:nowrap:
\begin{eqnarray*} f\left(x;c\right) & = & c\left(-x\right)^{c-1}\exp\left(-\left(-x\right)^{c}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{c}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{1/c}\end{eqnarray*}
The mean is the negative of the right-skewed Frechet distribution
given above, and the other statistical parameters can be computed from
.. math::
\mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).
.. math::
h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1
where :math:`\gamma` is Euler's constant and equal to
.. math::
\gamma\approx0.57721566490153286061.
Implementation: `scipy.stats.frechet_l`
|