File: continuous_frechet_l.rst

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (31 lines) | stat: -rw-r--r-- 942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

.. _continuous-frechet_l:

Fréchet (left-skewed, Extreme Value Type III, Weibull maximum) Distribution
============================================================================

Defined for :math:`x<0` and :math:`c>0` .

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & c\left(-x\right)^{c-1}\exp\left(-\left(-x\right)^{c}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{c}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{1/c}\end{eqnarray*}

The mean is the negative of the right-skewed Frechet distribution
given above, and the other statistical parameters can be computed from

.. math::

     \mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).

.. math::

     h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1

where :math:`\gamma` is Euler's constant and equal to

.. math::

     \gamma\approx0.57721566490153286061.

Implementation: `scipy.stats.frechet_l`