1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
.. _continuous-gengamma:
Generalized Gamma Distribution
==============================
A general probability form that reduces to many common distributions: :math:`x>0` :math:`a>0` and :math:`c\neq0.`
.. math::
:nowrap:
\begin{eqnarray*} f\left(x;a,c\right) & = & \frac{\left|c\right|x^{ca-1}}{\Gamma\left(a\right)}\exp\left(-x^{c}\right)\\ F\left(x;a,c\right) & = & \begin{array}{cc} \frac{\Gamma\left(a,x^{c}\right)}{\Gamma\left(a\right)} & c>0\\ 1-\frac{\Gamma\left(a,x^{c}\right)}{\Gamma\left(a\right)} & c<0\end{array}\\ G\left(q;a,c\right) & = & \left\{ \Gamma^{-1}\left[a,\Gamma\left(a\right)q\right]\right\} ^{1/c}\quad c>0\\ & & \left\{ \Gamma^{-1}\left[a,\Gamma\left(a\right)\left(1-q\right)\right]\right\} ^{1/c}\quad c<0\end{eqnarray*}
.. math::
\mu_{n}^{\prime}=\frac{\Gamma\left(a+\frac{n}{c}\right)}{\Gamma\left(a\right)}
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & \frac{\Gamma\left(a+\frac{1}{c}\right)}{\Gamma\left(a\right)}\\ \mu_{2} & = & \frac{\Gamma\left(a+\frac{2}{c}\right)}{\Gamma\left(a\right)}-\mu^{2}\\ \gamma_{1} & = & \frac{\Gamma\left(a+\frac{3}{c}\right)/\Gamma\left(a\right)-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{\Gamma\left(a+\frac{4}{c}\right)/\Gamma\left(a\right)-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\\ m_{d} & = & \left(\frac{ac-1}{c}\right)^{1/c}.\end{eqnarray*}
Special cases are Weibull :math:`\left(a=1\right)` , half-normal :math:`\left(a=1/2,c=2\right)` and ordinary gamma distributions :math:`c=1.` If :math:`c=-1` then it is the inverted gamma distribution.
.. math::
h\left[X\right]=a-a\Psi\left(a\right)+\frac{1}{c}\Psi\left(a\right)+\log\Gamma\left(a\right)-\log\left|c\right|.
Implementation: `scipy.stats.gengamma`
|