File: continuous_gilbrat.rst

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (24 lines) | stat: -rw-r--r-- 934 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

.. _continuous-gilbrat:

Gilbrat Distribution
====================

Special case of the log-normal with :math:`\sigma=1` and :math:`S=1.0` (typically also :math:`L=0.0` )

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\sigma\right) & = & \frac{1}{x\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\log x\right)^{2}\right]\\ F\left(x;\sigma\right) & = & \Phi\left(\log x\right)=\frac{1}{2}\left[1+\mathrm{erf}\left(\frac{\log x}{\sqrt{2}}\right)\right]\\ G\left(q;\sigma\right) & = & \exp\left\{ \Phi^{-1}\left(q\right)\right\} \end{eqnarray*}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \sqrt{e}\\ \mu_{2} & = & e\left[e-1\right]\\ \gamma_{1} & = & \sqrt{e-1}\left(2+e\right)\\ \gamma_{2} & = & e^{4}+2e^{3}+3e^{2}-6\end{eqnarray*}

.. math::
   :nowrap:

    \begin{eqnarray*} h\left[X\right] & = & \log\left(\sqrt{2\pi e}\right)\\  & \approx & 1.4189385332046727418\end{eqnarray*}

Implementation: `scipy.stats.gilbrat`