1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
.. _continuous-hypsecant:
Hyperbolic Secant Distribution
==============================
Related to the logistic distribution and used in lifetime analysis.
Standard form is (defined over all :math:`x` )
.. math::
:nowrap:
\begin{eqnarray*} f\left(x\right) & = & \frac{1}{\pi}\mathrm{sech}\left(x\right)\\ F\left(x\right) & = & \frac{2}{\pi}\arctan\left(e^{x}\right)\\ G\left(q\right) & = & \log\left(\tan\left(\frac{\pi}{2}q\right)\right)\end{eqnarray*}
.. math::
M\left(t\right)=\sec\left(\frac{\pi}{2}t\right)
.. math::
:nowrap:
\begin{eqnarray*} \mu_{n}^{\prime} & = & \frac{1+\left(-1\right)^{n}}{2\pi2^{2n}}n!\left[\zeta\left(n+1,\frac{1}{4}\right)-\zeta\left(n+1,\frac{3}{4}\right)\right]\\ & = & \left\{ \begin{array}{cc} 0 & n\mathrm{ odd}\\ C_{n/2}\frac{\pi^{n}}{2^{n}} & n\mathrm{ even}\end{array}\right.\end{eqnarray*}
where :math:`C_{m}` is an integer given by
.. math::
:nowrap:
\begin{eqnarray*} C_{m} & = & \frac{\left(2m\right)!\left[\zeta\left(2m+1,\frac{1}{4}\right)-\zeta\left(2m+1,\frac{3}{4}\right)\right]}{\pi^{2m+1}2^{2m}}\\ & = & 4\left(-1\right)^{m-1}\frac{16^{m}}{2m+1}B_{2m+1}\left(\frac{1}{4}\right)\end{eqnarray*}
where :math:`B_{2m+1}\left(\frac{1}{4}\right)` is the Bernoulli polynomial of order :math:`2m+1` evaluated at :math:`1/4.` Thus
.. math::
\mu_{n}^{\prime}=\left\{ \begin{array}{cc} 0 & n\mathrm{ odd}\\ 4\left(-1\right)^{n/2-1}\frac{\left(2\pi\right)^{n}}{n+1}B_{n+1}\left(\frac{1}{4}\right) & n\mathrm{ even}\end{array}\right.
.. math::
:nowrap:
\begin{eqnarray*} m_{d}=m_{n}=\mu & = & 0\\ \mu_{2} & = & \frac{\pi^{2}}{4}\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & 2\end{eqnarray*}
.. math::
h\left[X\right]=\log\left(2\pi\right).
Implementation: `scipy.stats.hypsecant`
|