File: continuous_invgauss.rst

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (23 lines) | stat: -rw-r--r-- 1,704 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

.. _continuous-invgauss:

Inverse Normal (Inverse Gaussian) Distribution
==============================================

The standard form involves the shape parameter :math:`\mu` (in most definitions, :math:`L=0.0` is used). (In terms of the regress documentation :math:`\mu=A/B` ) and :math:`B=S` and :math:`L` is not a parameter in that distribution. A standard form is :math:`x>0`

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\mu\right) & = & \frac{1}{\sqrt{2\pi x^{3}}}\exp\left(-\frac{\left(x-\mu\right)^{2}}{2x\mu^{2}}\right).\\ F\left(x;\mu\right) & = & \Phi\left(\frac{1}{\sqrt{x}}\frac{x-\mu}{\mu}\right)+\exp\left(\frac{2}{\mu}\right)\Phi\left(-\frac{1}{\sqrt{x}}\frac{x+\mu}{\mu}\right)\\ G\left(q;\mu\right) & = & F^{-1}\left(q;\mu\right)\end{eqnarray*}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \mu\\ \mu_{2} & = & \mu^{3}\\ \gamma_{1} & = & 3\sqrt{\mu}\\ \gamma_{2} & = & 15\mu\\ m_{d} & = & \frac{\mu}{2}\left(\sqrt{9\mu^{2}+4}-3\mu\right)\end{eqnarray*}

This is related to the canonical form or JKB "two-parameter "inverse Gaussian when written in it's full form with scale parameter :math:`S` and location parameter :math:`L` by taking :math:`L=0` and :math:`S\equiv\lambda,` then :math:`\mu S` is equal to :math:`\mu_{2}` where :math:`\mu_{2}` is the parameter used by JKB. We prefer this form because of it's
consistent use of the scale parameter. Notice that in JKB the skew :math:`\left(\sqrt{\beta_{1}}\right)` and the kurtosis ( :math:`\beta_{2}-3` ) are both functions only of :math:`\mu_{2}/\lambda=\mu S/S=\mu` as shown here, while the variance and mean of the standard form here
are transformed appropriately.

Implementation: `scipy.stats.invgauss`