File: discrete.rst

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (290 lines) | stat: -rw-r--r-- 8,070 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
.. _discrete-random-variables:


==================================
Discrete Statistical Distributions
==================================

Discrete random variables take on only a countable number of values.
The commonly used distributions are included in SciPy and described in
this document. Each discrete distribution can take one extra integer
parameter: :math:`L.` The relationship between the general distribution
:math:`p` and the standard distribution :math:`p_{0}` is

.. math::
   :nowrap:

    p\left(x\right) = p_{0}\left(x-L\right)

which allows for shifting of the input. When a distribution generator
is initialized, the discrete distribution can either specify the
beginning and ending (integer) values :math:`a` and :math:`b` which must be such that

.. math::
   :nowrap:

    p_{0}\left(x\right) = 0\quad x < a \textrm{ or } x > b

in which case, it is assumed that the pdf function is specified on the
integers :math:`a+mk\leq b` where :math:`k` is a non-negative integer ( :math:`0,1,2,\ldots` ) and :math:`m` is a positive integer multiplier. Alternatively, the two lists :math:`x_{k}` and :math:`p\left(x_{k}\right)` can be provided directly in which case a dictionary is set up
internally to evaluate probabilities and generate random variates.


Probability Mass Function (PMF)
-------------------------------

The probability mass function of a random variable X is defined as the
probability that the random variable takes on a particular value.

.. math::
   :nowrap:

    p\left(x_{k}\right)=P\left[X=x_{k}\right]

This is also sometimes called the probability density function,
although technically

.. math::
   :nowrap:

    f\left(x\right)=\sum_{k}p\left(x_{k}\right)\delta\left(x-x_{k}\right)

is the probability density function for a discrete distribution [#]_ .

.. [#]
    XXX: Unknown layout Plain Layout: Note that we will be using :math:`p` to represent the probability mass function and a parameter (a
    XXX: probability). The usage should be obvious from context.


Cumulative Distribution Function (CDF)
--------------------------------------

The cumulative distribution function is

.. math::
   :nowrap:

    F\left(x\right)=P\left[X\leq x\right]=\sum_{x_{k}\leq x}p\left(x_{k}\right)

and is also useful to be able to compute. Note that

.. math::
   :nowrap:

    F\left(x_{k}\right)-F\left(x_{k-1}\right)=p\left(x_{k}\right)


Survival Function
-----------------

The survival function is just

.. math::
   :nowrap:

    S\left(x\right)=1-F\left(x\right)=P\left[X>k\right]

the probability that the random variable is strictly larger than :math:`k` .

.. _discrete-ppf:

Percent Point Function (Inverse CDF)
------------------------------------

The percent point function is the inverse of the cumulative
distribution function and is

.. math::
   :nowrap:

    G\left(q\right)=F^{-1}\left(q\right)

for discrete distributions, this must be modified for cases where
there is no :math:`x_{k}` such that :math:`F\left(x_{k}\right)=q.` In these cases we choose :math:`G\left(q\right)` to be the smallest value :math:`x_{k}=G\left(q\right)` for which :math:`F\left(x_{k}\right)\geq q` . If :math:`q=0` then we define :math:`G\left(0\right)=a-1` . This definition allows random variates to be defined in the same way
as with continuous rv's using the inverse cdf on a uniform
distribution to generate random variates.


Inverse survival function
-------------------------

The inverse survival function is the inverse of the survival function

.. math::
   :nowrap:

    Z\left(\alpha\right)=S^{-1}\left(\alpha\right)=G\left(1-\alpha\right)

and is thus the smallest non-negative integer :math:`k` for which :math:`F\left(k\right)\geq1-\alpha` or the smallest non-negative integer :math:`k` for which :math:`S\left(k\right)\leq\alpha.`


Hazard functions
----------------

If desired, the hazard function and the cumulative hazard function
could be defined as

.. math::
   :nowrap:

    h\left(x_{k}\right)=\frac{p\left(x_{k}\right)}{1-F\left(x_{k}\right)}

and

.. math::
   :nowrap:

    H\left(x\right)=\sum_{x_{k}\leq x}h\left(x_{k}\right)=\sum_{x_{k}\leq x}\frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{1-F\left(x_{k}\right)}.


Moments
-------

Non-central moments are defined using the PDF

.. math::
   :nowrap:

    \mu_{m}^{\prime}=E\left[X^{m}\right]=\sum_{k}x_{k}^{m}p\left(x_{k}\right).

Central moments are computed similarly :math:`\mu=\mu_{1}^{\prime}`

.. math::
   :nowrap:

    \begin{eqnarray*} \mu_{m}=E\left[\left(X-\mu\right)^{m}\right] & = & \sum_{k}\left(x_{k}-\mu\right)^{m}p\left(x_{k}\right)\\  & = & \sum_{k=0}^{m}\left(-1\right)^{m-k}\left(\begin{array}{c} m\\ k\end{array}\right)\mu^{m-k}\mu_{k}^{\prime}\end{eqnarray*}

The mean is the first moment

.. math::
   :nowrap:

    \mu=\mu_{1}^{\prime}=E\left[X\right]=\sum_{k}x_{k}p\left(x_{k}\right)

the variance is the second central moment

.. math::
   :nowrap:

    \mu_{2}=E\left[\left(X-\mu\right)^{2}\right]=\sum_{x_{k}}x_{k}^{2}p\left(x_{k}\right)-\mu^{2}.

Skewness is defined as

.. math::
   :nowrap:

    \gamma_{1}=\frac{\mu_{3}}{\mu_{2}^{3/2}}

while (Fisher) kurtosis is

.. math::
   :nowrap:

    \gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3,

so that a normal distribution has a kurtosis of zero.


Moment generating function
--------------------------

The moment generating function is defined as

.. math::
   :nowrap:

    M_{X}\left(t\right)=E\left[e^{Xt}\right]=\sum_{x_{k}}e^{x_{k}t}p\left(x_{k}\right)

Moments are found as the derivatives of the moment generating function
evaluated at :math:`0.`


Fitting data
------------

To fit data to a distribution, maximizing the likelihood function is
common. Alternatively, some distributions have well-known minimum
variance unbiased estimators. These will be chosen by default, but the
likelihood function will always be available for minimizing.

If :math:`f_{i}\left(k;\boldsymbol{\theta}\right)` is the PDF of a random-variable where :math:`\boldsymbol{\theta}` is a vector of parameters ( *e.g.* :math:`L` and :math:`S` ), then for a collection of :math:`N` independent samples from this distribution, the joint distribution the
random vector :math:`\mathbf{k}` is

.. math::
   :nowrap:

    f\left(\mathbf{k};\boldsymbol{\theta}\right)=\prod_{i=1}^{N}f_{i}\left(k_{i};\boldsymbol{\theta}\right).

The maximum likelihood estimate of the parameters :math:`\boldsymbol{\theta}` are the parameters which maximize this function with :math:`\mathbf{x}` fixed and given by the data:

.. math::
   :nowrap:

    \begin{eqnarray*} \hat{\boldsymbol{\theta}} & = & \arg\max_{\boldsymbol{\theta}}f\left(\mathbf{k};\boldsymbol{\theta}\right)\\  & = & \arg\min_{\boldsymbol{\theta}}l_{\mathbf{k}}\left(\boldsymbol{\theta}\right).\end{eqnarray*}

Where

.. math::
   :nowrap:

    \begin{eqnarray*} l_{\mathbf{k}}\left(\boldsymbol{\theta}\right) & = & -\sum_{i=1}^{N}\log f\left(k_{i};\boldsymbol{\theta}\right)\\  & = & -N\overline{\log f\left(k_{i};\boldsymbol{\theta}\right)}\end{eqnarray*}


Standard notation for mean
--------------------------

We will use

.. math::
   :nowrap:

    \overline{y\left(\mathbf{x}\right)}=\frac{1}{N}\sum_{i=1}^{N}y\left(x_{i}\right)

where :math:`N` should be clear from context.


Combinations
------------

Note that

.. math::
   :nowrap:

    k!=k\cdot\left(k-1\right)\cdot\left(k-2\right)\cdot\cdots\cdot1=\Gamma\left(k+1\right)

and has special cases of

.. math::
   :nowrap:

    \begin{eqnarray*} 0! & \equiv & 1\\ k! & \equiv & 0\quad k<0\end{eqnarray*}

and

.. math::
   :nowrap:

    \left(\begin{array}{c} n\\ k\end{array}\right)=\frac{n!}{\left(n-k\right)!k!}.

If :math:`n<0` or :math:`k<0` or :math:`k>n` we define :math:`\left(\begin{array}{c} n\\ k\end{array}\right)=0`



Discrete Distributions in `scipy.stats`
---------------------------------------
.. toctree::
   :maxdepth: 1

   discrete_bernoulli
   discrete_binom
   discrete_boltzmann
   discrete_planck
   discrete_poisson
   discrete_geom
   discrete_nbinom
   discrete_hypergeom
   discrete_zipf
   discrete_logser
   discrete_randint
   discrete_dlaplace