File: discrete_planck.rst

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (30 lines) | stat: -rw-r--r-- 1,057 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.. _discrete-planck:

Planck (discrete exponential) Distribution
==========================================

Named Planck because of its relationship to the black-body problem he
solved.

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;\lambda\right) & = & \left(1-e^{-\lambda}\right)e^{-\lambda k}\quad k\lambda\geq0\\ F\left(x;\lambda\right) & = & 1-e^{-\lambda\left(\left\lfloor x\right\rfloor +1\right)}\quad x\lambda\geq0\\ G\left(q;\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\right]-1\right\rceil .\end{eqnarray*}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \frac{1}{e^{\lambda}-1}\\ \mu_{2} & = & \frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}\\ \gamma_{1} & = & 2\cosh\left(\frac{\lambda}{2}\right)\\ \gamma_{2} & = & 4+2\cosh\left(\lambda\right)\end{eqnarray*}

.. math::
   :nowrap:

    M\left(t\right)=\frac{1-e^{-\lambda}}{1-e^{t-\lambda}}

.. math::
   :nowrap:

    h\left[X\right]=\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}-\log\left(1-e^{-\lambda}\right)

Implementation: `scipy.stats.planck`