File: _numpy_compat.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (111 lines) | stat: -rw-r--r-- 4,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""Functions copypasted from newer versions of numpy.

"""
from __future__ import division, print_function, absolute_import

import warnings
import sys

import numpy as np
from numpy.testing.nosetester import import_nose

from scipy._lib._version import NumpyVersion

if NumpyVersion(np.__version__) > '1.7.0.dev':
    _assert_warns = np.testing.assert_warns
else:
    def _assert_warns(warning_class, func, *args, **kw):
        r"""
        Fail unless the given callable throws the specified warning.

        This definition is copypasted from numpy 1.9.0.dev.
        The version in earlier numpy returns None.

        Parameters
        ----------
        warning_class : class
            The class defining the warning that `func` is expected to throw.
        func : callable
            The callable to test.
        *args : Arguments
            Arguments passed to `func`.
        **kwargs : Kwargs
            Keyword arguments passed to `func`.

        Returns
        -------
        The value returned by `func`.

        """
        with warnings.catch_warnings(record=True) as l:
            warnings.simplefilter('always')
            result = func(*args, **kw)
            if not len(l) > 0:
                raise AssertionError("No warning raised when calling %s"
                        % func.__name__)
            if not l[0].category is warning_class:
                raise AssertionError("First warning for %s is not a "
                        "%s( is %s)" % (func.__name__, warning_class, l[0]))
        return result


def assert_raises_regex(exception_class, expected_regexp,
                        callable_obj=None, *args, **kwargs):
    """
    Fail unless an exception of class exception_class and with message that
    matches expected_regexp is thrown by callable when invoked with arguments
    args and keyword arguments kwargs.
    Name of this function adheres to Python 3.2+ reference, but should work in
    all versions down to 2.6.
    Notes
    -----
    .. versionadded:: 1.8.0
    """
    __tracebackhide__ = True  # Hide traceback for py.test
    nose = import_nose()

    if sys.version_info.major >= 3:
        funcname = nose.tools.assert_raises_regex
    else:
        # Only present in Python 2.7, missing from unittest in 2.6
            funcname = nose.tools.assert_raises_regexp

    return funcname(exception_class, expected_regexp, callable_obj,
                    *args, **kwargs)


if NumpyVersion(np.__version__) >= '1.10.0':
    from numpy import broadcast_to
else:
    # Definition of `broadcast_to` from numpy 1.10.0.

    def _maybe_view_as_subclass(original_array, new_array):
        if type(original_array) is not type(new_array):
            # if input was an ndarray subclass and subclasses were OK,
            # then view the result as that subclass.
            new_array = new_array.view(type=type(original_array))
            # Since we have done something akin to a view from original_array, we
            # should let the subclass finalize (if it has it implemented, i.e., is
            # not None).
            if new_array.__array_finalize__:
                new_array.__array_finalize__(original_array)
        return new_array

    def _broadcast_to(array, shape, subok, readonly):
        shape = tuple(shape) if np.iterable(shape) else (shape,)
        array = np.array(array, copy=False, subok=subok)
        if not shape and array.shape:
            raise ValueError('cannot broadcast a non-scalar to a scalar array')
        if any(size < 0 for size in shape):
            raise ValueError('all elements of broadcast shape must be non-'
                             'negative')
        broadcast = np.nditer(
            (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'],
            op_flags=['readonly'], itershape=shape, order='C').itviews[0]
        result = _maybe_view_as_subclass(array, broadcast)
        if not readonly and array.flags.writeable:
            result.flags.writeable = True
        return result

    def broadcast_to(array, shape, subok=False):
        return _broadcast_to(array, shape, subok=subok, readonly=True)