File: hierarchy.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2821 lines) | stat: -rw-r--r-- 95,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
"""
========================================================
Hierarchical clustering (:mod:`scipy.cluster.hierarchy`)
========================================================

.. currentmodule:: scipy.cluster.hierarchy

These functions cut hierarchical clusterings into flat clusterings
or find the roots of the forest formed by a cut by providing the flat
cluster ids of each observation.

.. autosummary::
   :toctree: generated/

   fcluster
   fclusterdata
   leaders

These are routines for agglomerative clustering.

.. autosummary::
   :toctree: generated/

   linkage
   single
   complete
   average
   weighted
   centroid
   median
   ward

These routines compute statistics on hierarchies.

.. autosummary::
   :toctree: generated/

   cophenet
   from_mlab_linkage
   inconsistent
   maxinconsts
   maxdists
   maxRstat
   to_mlab_linkage

Routines for visualizing flat clusters.

.. autosummary::
   :toctree: generated/

   dendrogram

These are data structures and routines for representing hierarchies as
tree objects.

.. autosummary::
   :toctree: generated/

   ClusterNode
   leaves_list
   to_tree
   cut_tree

These are predicates for checking the validity of linkage and
inconsistency matrices as well as for checking isomorphism of two
flat cluster assignments.

.. autosummary::
   :toctree: generated/

   is_valid_im
   is_valid_linkage
   is_isomorphic
   is_monotonic
   correspond
   num_obs_linkage

Utility routines for plotting:

.. autosummary::
   :toctree: generated/

   set_link_color_palette

References
----------

.. [1] "Statistics toolbox." API Reference Documentation. The MathWorks.
   http://www.mathworks.com/access/helpdesk/help/toolbox/stats/.
   Accessed October 1, 2007.

.. [2] "Hierarchical clustering." API Reference Documentation.
   The Wolfram Research, Inc.
   http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/
   HierarchicalClustering.html.
   Accessed October 1, 2007.

.. [3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage
   Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969.

.. [4] Ward Jr, JH. "Hierarchical grouping to optimize an objective
   function." Journal of the American Statistical Association. 58(301):
   pp. 236--44. 1963.

.. [5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika.
   32(2): pp. 241--54. 1966.

.. [6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp.
   855--60. 1962.

.. [7] Batagelj, V. "Comparing resemblance measures." Journal of
   Classification. 12: pp. 73--90. 1995.

.. [8] Sokal, RR and Michener, CD. "A statistical method for evaluating
   systematic relationships." Scientific Bulletins. 38(22):
   pp. 1409--38. 1958.

.. [9] Edelbrock, C. "Mixture model tests of hierarchical clustering
   algorithms: the problem of classifying everybody." Multivariate
   Behavioral Research. 14: pp. 367--84. 1979.

.. [10] Jain, A., and Dubes, R., "Algorithms for Clustering Data."
   Prentice-Hall. Englewood Cliffs, NJ. 1988.

.. [11] Fisher, RA "The use of multiple measurements in taxonomic
   problems." Annals of Eugenics, 7(2): 179-188. 1936


* MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.

* Mathematica is a registered trademark of The Wolfram Research, Inc.

"""
from __future__ import division, print_function, absolute_import

# Copyright (C) Damian Eads, 2007-2008. New BSD License.

# hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com)
#
# Author: Damian Eads
# Date:   September 22, 2007
#
# Copyright (c) 2007, 2008, Damian Eads
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#   - Redistributions of source code must retain the above
#     copyright notice, this list of conditions and the
#     following disclaimer.
#   - Redistributions in binary form must reproduce the above copyright
#     notice, this list of conditions and the following disclaimer
#     in the documentation and/or other materials provided with the
#     distribution.
#   - Neither the name of the author nor the names of its
#     contributors may be used to endorse or promote products derived
#     from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import warnings
import bisect
from collections import deque

import numpy as np
from . import _hierarchy
import scipy.spatial.distance as distance

from scipy._lib.six import string_types
from scipy._lib.six import xrange

_LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3,
                    'median': 4, 'ward': 5, 'weighted': 6}
_EUCLIDEAN_METHODS = ('centroid', 'median', 'ward')


__all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet',
           'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata',
           'from_mlab_linkage', 'inconsistent', 'is_isomorphic',
           'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders',
           'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts',
           'median', 'num_obs_linkage', 'set_link_color_palette', 'single',
           'to_mlab_linkage', 'to_tree', 'ward', 'weighted', 'distance']


def _warning(s):
    warnings.warn('scipy.cluster: %s' % s, stacklevel=3)


def _copy_array_if_base_present(a):
    """
    Copies the array if its base points to a parent array.
    """
    if a.base is not None:
        return a.copy()
    elif np.issubsctype(a, np.float32):
        return np.array(a, dtype=np.double)
    else:
        return a


def _copy_arrays_if_base_present(T):
    """
    Accepts a tuple of arrays T. Copies the array T[i] if its base array
    points to an actual array. Otherwise, the reference is just copied.
    This is useful if the arrays are being passed to a C function that
    does not do proper striding.
    """
    l = [_copy_array_if_base_present(a) for a in T]
    return l


def _randdm(pnts):
    """ Generates a random distance matrix stored in condensed form. A
        pnts * (pnts - 1) / 2 sized vector is returned.
    """
    if pnts >= 2:
        D = np.random.rand(pnts * (pnts - 1) / 2)
    else:
        raise ValueError("The number of points in the distance matrix "
                         "must be at least 2.")
    return D


def single(y):
    """
    Performs single/min/nearest linkage on the condensed distance matrix ``y``

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        The linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='single', metric='euclidean')


def complete(y):
    """
    Performs complete/max/farthest point linkage on a condensed distance matrix

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the ``linkage`` function documentation for more information
        on its structure.

    See Also
    --------
    linkage

    """
    return linkage(y, method='complete', metric='euclidean')


def average(y):
    """
    Performs average/UPGMA linkage on a condensed distance matrix

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the ``linkage`` function documentation for more information
        on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='average', metric='euclidean')


def weighted(y):
    """
    Performs weighted/WPGMA linkage on the condensed distance matrix.

    See ``linkage`` for more information on the return
    structure and algorithm.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the ``linkage`` function documentation for more information
        on its structure.

    See Also
    --------
    linkage : for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='weighted', metric='euclidean')


def centroid(y):
    """
    Performs centroid/UPGMC linkage.

    See ``linkage`` for more information on the return structure
    and algorithm.

    The following are common calling conventions:

    1. ``Z = centroid(y)``

       Performs centroid/UPGMC linkage on the condensed distance
       matrix ``y``.  See ``linkage`` for more information on the return
       structure and algorithm.

    2. ``Z = centroid(X)``

       Performs centroid/UPGMC linkage on the observation matrix ``X``
       using Euclidean distance as the distance metric. See ``linkage``
       for more information on the return structure and algorithm.

    Parameters
    ----------
    y : ndarray
        A condensed or redundant distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns. Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the ``linkage`` function documentation for more information
        on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='centroid', metric='euclidean')


def median(y):
    """
    Performs median/WPGMC linkage.

    See ``linkage`` for more information on the return structure
    and algorithm.

     The following are common calling conventions:

     1. ``Z = median(y)``

        Performs median/WPGMC linkage on the condensed distance matrix
        ``y``.  See ``linkage`` for more information on the return
        structure and algorithm.

     2. ``Z = median(X)``

        Performs median/WPGMC linkage on the observation matrix ``X``
        using Euclidean distance as the distance metric. See linkage
        for more information on the return structure and algorithm.

    Parameters
    ----------
    y : ndarray
        A condensed or redundant distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns. Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='median', metric='euclidean')


def ward(y):
    """
    Performs Ward's linkage on a condensed or redundant distance matrix.

    See linkage for more information on the return structure
    and algorithm.

    The following are common calling conventions:

    1. ``Z = ward(y)``
       Performs Ward's linkage on the condensed distance matrix ``Z``. See
       linkage for more information on the return structure and
       algorithm.

    2. ``Z = ward(X)``
       Performs Ward's linkage on the observation matrix ``X`` using
       Euclidean distance as the distance metric. See linkage for more
       information on the return structure and algorithm.

    Parameters
    ----------
    y : ndarray
        A condensed or redundant distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns. Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.

    """
    return linkage(y, method='ward', metric='euclidean')


def linkage(y, method='single', metric='euclidean'):
    """
    Performs hierarchical/agglomerative clustering on the condensed
    distance matrix y.

    y must be a :math:`{n \\choose 2}` sized
    vector where n is the number of original observations paired
    in the distance matrix. The behavior of this function is very
    similar to the MATLAB linkage function.

    An :math:`(n-1)` by 4  matrix ``Z`` is returned. At the
    :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and
    ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A
    cluster with an index less than :math:`n` corresponds to one of
    the :math:`n` original observations. The distance between
    clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The
    fourth value ``Z[i, 3]`` represents the number of original
    observations in the newly formed cluster.

    The following linkage methods are used to compute the distance
    :math:`d(s, t)` between two clusters :math:`s` and
    :math:`t`. The algorithm begins with a forest of clusters that
    have yet to be used in the hierarchy being formed. When two
    clusters :math:`s` and :math:`t` from this forest are combined
    into a single cluster :math:`u`, :math:`s` and :math:`t` are
    removed from the forest, and :math:`u` is added to the
    forest. When only one cluster remains in the forest, the algorithm
    stops, and this cluster becomes the root.

    A distance matrix is maintained at each iteration. The ``d[i,j]``
    entry corresponds to the distance between cluster :math:`i` and
    :math:`j` in the original forest.

    At each iteration, the algorithm must update the distance matrix
    to reflect the distance of the newly formed cluster u with the
    remaining clusters in the forest.

    Suppose there are :math:`|u|` original observations
    :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and
    :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in
    cluster :math:`v`. Recall :math:`s` and :math:`t` are
    combined to form cluster :math:`u`. Let :math:`v` be any
    remaining cluster in the forest that is not :math:`u`.

    The following are methods for calculating the distance between the
    newly formed cluster :math:`u` and each :math:`v`.

      * method='single' assigns

        .. math::
           d(u,v) = \\min(dist(u[i],v[j]))

        for all points :math:`i` in cluster :math:`u` and
        :math:`j` in cluster :math:`v`. This is also known as the
        Nearest Point Algorithm.

      * method='complete' assigns

        .. math::
           d(u, v) = \\max(dist(u[i],v[j]))

        for all points :math:`i` in cluster u and :math:`j` in
        cluster :math:`v`. This is also known by the Farthest Point
        Algorithm or Voor Hees Algorithm.

      * method='average' assigns

        .. math::
           d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])}
                                   {(|u|*|v|)}

        for all points :math:`i` and :math:`j` where :math:`|u|`
        and :math:`|v|` are the cardinalities of clusters :math:`u`
        and :math:`v`, respectively. This is also called the UPGMA
        algorithm.

      * method='weighted' assigns

        .. math::
           d(u,v) = (dist(s,v) + dist(t,v))/2

        where cluster u was formed with cluster s and t and v
        is a remaining cluster in the forest. (also called WPGMA)

      * method='centroid' assigns

        .. math::
           dist(s,t) = ||c_s-c_t||_2

        where :math:`c_s` and :math:`c_t` are the centroids of
        clusters :math:`s` and :math:`t`, respectively. When two
        clusters :math:`s` and :math:`t` are combined into a new
        cluster :math:`u`, the new centroid is computed over all the
        original objects in clusters :math:`s` and :math:`t`. The
        distance then becomes the Euclidean distance between the
        centroid of :math:`u` and the centroid of a remaining cluster
        :math:`v` in the forest. This is also known as the UPGMC
        algorithm.

      * method='median' assigns :math:`d(s,t)` like the ``centroid``
        method. When two clusters :math:`s` and :math:`t` are combined
        into a new cluster :math:`u`, the average of centroids s and t
        give the new centroid :math:`u`. This is also known as the
        WPGMC algorithm.

      * method='ward' uses the Ward variance minimization algorithm.
        The new entry :math:`d(u,v)` is computed as follows,

        .. math::

           d(u,v) = \\sqrt{\\frac{|v|+|s|}
                               {T}d(v,s)^2
                        + \\frac{|v|+|t|}
                               {T}d(v,t)^2
                        - \\frac{|v|}
                               {T}d(s,t)^2}

        where :math:`u` is the newly joined cluster consisting of
        clusters :math:`s` and :math:`t`, :math:`v` is an unused
        cluster in the forest, :math:`T=|v|+|s|+|t|`, and
        :math:`|*|` is the cardinality of its argument. This is also
        known as the incremental algorithm.

    Warning: When the minimum distance pair in the forest is chosen, there
    may be two or more pairs with the same minimum distance. This
    implementation may chose a different minimum than the MATLAB
    version.

    Parameters
    ----------
    y : ndarray
        A condensed or redundant distance matrix. A condensed distance matrix
        is a flat array containing the upper triangular of the distance matrix.
        This is the form that ``pdist`` returns. Alternatively, a collection of
        :math:`m` observation vectors in n dimensions may be passed as an
        :math:`m` by :math:`n` array.
    method : str, optional
        The linkage algorithm to use. See the ``Linkage Methods`` section below
        for full descriptions.
    metric : str or function, optional
        The distance metric to use in the case that y is a collection of
        observation vectors; ignored otherwise. See the ``distance.pdist``
        function for a list of valid distance metrics. A custom distance
        function can also be used. See the ``distance.pdist`` function for
        details.

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix.

    Notes
    -----
    1. For method 'single' an optimized algorithm called SLINK is implemented,
       which has :math:`O(n^2)` time complexity.
       For methods 'complete', 'average', 'weighted' and 'ward' an algorithm
       called nearest-neighbors chain is implemented, which too has time
       complexity :math:`O(n^2)`.
       For other methods a naive algorithm is implemented with :math:`O(n^3)`
       time complexity.
       All algorithms use :math:`O(n^2)` memory.
       Refer to [1]_ for details about the algorithms.
    2. Methods 'centroid', 'median' and 'ward' are correctly defined only if
       Euclidean pairwise metric is used. If `y` is passed as precomputed
       pairwise distances, then it is a user responsibility to assure that
       these distances are in fact Euclidean, otherwise the produced result
       will be incorrect.

    References
    ----------
    .. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering
           algorithms", `arXiv:1109.2378v1 <http://arxiv.org/abs/1109.2378v1>`_
           , 2011.
    """
    if method not in _LINKAGE_METHODS:
        raise ValueError("Invalid method: {0}".format(method))

    y = _convert_to_double(np.asarray(y, order='c'))

    if y.ndim == 1:
        distance.is_valid_y(y, throw=True, name='y')
        [y] = _copy_arrays_if_base_present([y])
    elif y.ndim == 2:
        if method in _EUCLIDEAN_METHODS and metric != 'euclidean':
            raise ValueError("Method '{0}' requires the distance metric "
                             "to be Euclidean".format(method))
        y = distance.pdist(y, metric)
    else:
        raise ValueError("`y` must be 1 or 2 dimensional.")

    n = int(distance.num_obs_y(y))
    method_code = _LINKAGE_METHODS[method]
    if method == 'single':
        return _hierarchy.slink(y, n)
    elif method in ['complete', 'average', 'weighted', 'ward']:
        return _hierarchy.nn_chain(y, n, method_code)
    else:
        return _hierarchy.linkage(y, n, method_code)


class ClusterNode:
    """
    A tree node class for representing a cluster.

    Leaf nodes correspond to original observations, while non-leaf nodes
    correspond to non-singleton clusters.

    The to_tree function converts a matrix returned by the linkage
    function into an easy-to-use tree representation.

    See Also
    --------
    to_tree : for converting a linkage matrix ``Z`` into a tree object.

    """

    def __init__(self, id, left=None, right=None, dist=0, count=1):
        if id < 0:
            raise ValueError('The id must be non-negative.')
        if dist < 0:
            raise ValueError('The distance must be non-negative.')
        if (left is None and right is not None) or \
           (left is not None and right is None):
            raise ValueError('Only full or proper binary trees are permitted.'
                             '  This node has one child.')
        if count < 1:
            raise ValueError('A cluster must contain at least one original '
                             'observation.')
        self.id = id
        self.left = left
        self.right = right
        self.dist = dist
        if self.left is None:
            self.count = count
        else:
            self.count = left.count + right.count

    def __lt__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist < node.dist

    def __gt__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist > node.dist

    def __eq__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist == node.dist

    def get_id(self):
        """
        The identifier of the target node.

        For ``0 <= i < n``, `i` corresponds to original observation i.
        For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed
        at iteration ``i-n``.

        Returns
        -------
        id : int
            The identifier of the target node.

        """
        return self.id

    def get_count(self):
        """
        The number of leaf nodes (original observations) belonging to
        the cluster node nd. If the target node is a leaf, 1 is
        returned.

        Returns
        -------
        get_count : int
            The number of leaf nodes below the target node.

        """
        return self.count

    def get_left(self):
        """
        Return a reference to the left child tree object.

        Returns
        -------
        left : ClusterNode
            The left child of the target node.  If the node is a leaf,
            None is returned.

        """
        return self.left

    def get_right(self):
        """
        Returns a reference to the right child tree object.

        Returns
        -------
        right : ClusterNode
            The left child of the target node.  If the node is a leaf,
            None is returned.

        """
        return self.right

    def is_leaf(self):
        """
        Returns True if the target node is a leaf.

        Returns
        -------
        leafness : bool
            True if the target node is a leaf node.

        """
        return self.left is None

    def pre_order(self, func=(lambda x: x.id)):
        """
        Performs pre-order traversal without recursive function calls.

        When a leaf node is first encountered, ``func`` is called with
        the leaf node as its argument, and its result is appended to
        the list.

        For example, the statement::

           ids = root.pre_order(lambda x: x.id)

        returns a list of the node ids corresponding to the leaf nodes
        of the tree as they appear from left to right.

        Parameters
        ----------
        func : function
            Applied to each leaf ClusterNode object in the pre-order traversal.
            Given the i'th leaf node in the pre-ordeR traversal ``n[i]``, the
            result of func(n[i]) is stored in L[i]. If not provided, the index
            of the original observation to which the node corresponds is used.

        Returns
        -------
        L : list
            The pre-order traversal.

        """

        # Do a preorder traversal, caching the result. To avoid having to do
        # recursion, we'll store the previous index we've visited in a vector.
        n = self.count

        curNode = [None] * (2 * n)
        lvisited = set()
        rvisited = set()
        curNode[0] = self
        k = 0
        preorder = []
        while k >= 0:
            nd = curNode[k]
            ndid = nd.id
            if nd.is_leaf():
                preorder.append(func(nd))
                k = k - 1
            else:
                if ndid not in lvisited:
                    curNode[k + 1] = nd.left
                    lvisited.add(ndid)
                    k = k + 1
                elif ndid not in rvisited:
                    curNode[k + 1] = nd.right
                    rvisited.add(ndid)
                    k = k + 1
                # If we've visited the left and right of this non-leaf
                # node already, go up in the tree.
                else:
                    k = k - 1

        return preorder


_cnode_bare = ClusterNode(0)
_cnode_type = type(ClusterNode)


def _order_cluster_tree(Z):
    """
    Returns clustering nodes in bottom-up order by distance.

    Parameters
    ----------
    Z : scipy.cluster.linkage array
        The linkage matrix.

    Returns
    -------
    nodes : list
        A list of ClusterNode objects.
    """
    q = deque()
    tree = to_tree(Z)
    q.append(tree)
    nodes = []

    while q:
        node = q.popleft()
        if not node.is_leaf():
            bisect.insort_left(nodes, node)
            q.append(node.get_right())
            q.append(node.get_left())
    return nodes


def cut_tree(Z, n_clusters=None, height=None):
    """
    Given a linkage matrix Z, return the cut tree.

    Parameters
    ----------
    Z : scipy.cluster.linkage array
        The linkage matrix.
    n_clusters : array_like, optional
        Number of clusters in the tree at the cut point.
    height : array_like, optional
        The height at which to cut the tree.  Only possible for ultrametric
        trees.

    Returns
    -------
    cutree : array
        An array indicating group membership at each agglomeration step.  I.e.,
        for a full cut tree, in the first column each data point is in its own
        cluster.  At the next step, two nodes are merged.  Finally all singleton
        and non-singleton clusters are in one group.  If `n_clusters` or
        `height` is given, the columns correspond to the columns of `n_clusters` or
        `height`.

    Examples
    --------
    >>> from scipy import cluster
    >>> np.random.seed(23)
    >>> X = np.random.randn(50, 4)
    >>> Z = cluster.hierarchy.ward(X)
    >>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
    >>> cutree[:10]
    array([[0, 0],
           [1, 1],
           [2, 2],
           [3, 3],
           [3, 4],
           [2, 2],
           [0, 0],
           [1, 5],
           [3, 6],
           [4, 7]])

    """
    nobs = num_obs_linkage(Z)
    nodes = _order_cluster_tree(Z)

    if height is not None and n_clusters is not None:
        raise ValueError("At least one of either height or n_clusters "
                         "must be None")
    elif height is None and n_clusters is None:  # return the full cut tree
        cols_idx = np.arange(nobs)
    elif height is not None:
        heights = np.array([x.dist for x in nodes])
        cols_idx = np.searchsorted(heights, height)
    else:
        cols_idx = nobs - np.searchsorted(np.arange(nobs), n_clusters)

    try:
        n_cols = len(cols_idx)
    except TypeError:  # scalar
        n_cols = 1
        cols_idx = np.array([cols_idx])

    groups = np.zeros((n_cols, nobs), dtype=int)
    last_group = np.arange(nobs)
    if 0 in cols_idx:
        groups[0] = last_group

    for i, node in enumerate(nodes):
        idx = node.pre_order()
        this_group = last_group.copy()
        this_group[idx] = last_group[idx].min()
        this_group[this_group > last_group[idx].max()] -= 1
        if i + 1 in cols_idx:
            groups[np.where(i + 1 == cols_idx)[0]] = this_group
        last_group = this_group

    return groups.T


def to_tree(Z, rd=False):
    """
    Converts a hierarchical clustering encoded in the matrix ``Z`` (by
    linkage) into an easy-to-use tree object.

    The reference r to the root ClusterNode object is returned.

    Each ClusterNode object has a left, right, dist, id, and count
    attribute. The left and right attributes point to ClusterNode objects
    that were combined to generate the cluster. If both are None then
    the ClusterNode object is a leaf node, its count must be 1, and its
    distance is meaningless but set to 0.

    Note: This function is provided for the convenience of the library
    user. ClusterNodes are not used as input to any of the functions in this
    library.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix in proper form (see the ``linkage``
        function documentation).
    rd : bool, optional
        When False, a reference to the root ClusterNode object is
        returned.  Otherwise, a tuple (r,d) is returned. ``r`` is a
        reference to the root node while ``d`` is a dictionary
        mapping cluster ids to ClusterNode references. If a cluster id is
        less than n, then it corresponds to a singleton cluster
        (leaf node). See ``linkage`` for more information on the
        assignment of cluster ids to clusters.

    Returns
    -------
    L : list
        The pre-order traversal.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    # Number of original objects is equal to the number of rows minus 1.
    n = Z.shape[0] + 1

    # Create a list full of None's to store the node objects
    d = [None] * (n * 2 - 1)

    # Create the nodes corresponding to the n original objects.
    for i in xrange(0, n):
        d[i] = ClusterNode(i)

    nd = None

    for i in xrange(0, n - 1):
        fi = int(Z[i, 0])
        fj = int(Z[i, 1])
        if fi > i + n:
            raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
                              'is used before it is formed. See row %d, '
                              'column 0') % fi)
        if fj > i + n:
            raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
                              'is used before it is formed. See row %d, '
                              'column 1') % fj)
        nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2])
        #          ^ id   ^ left ^ right ^ dist
        if Z[i, 3] != nd.count:
            raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is '
                              'incorrect.') % i)
        d[n + i] = nd

    if rd:
        return (nd, d)
    else:
        return nd


def _convert_to_bool(X):
    if X.dtype != bool:
        X = X.astype(bool)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def _convert_to_double(X):
    if X.dtype != np.double:
        X = X.astype(np.double)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def cophenet(Z, Y=None):
    """
    Calculates the cophenetic distances between each observation in
    the hierarchical clustering defined by the linkage ``Z``.

    Suppose ``p`` and ``q`` are original observations in
    disjoint clusters ``s`` and ``t``, respectively and
    ``s`` and ``t`` are joined by a direct parent cluster
    ``u``. The cophenetic distance between observations
    ``i`` and ``j`` is simply the distance between
    clusters ``s`` and ``t``.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as an array
        (see `linkage` function).
    Y : ndarray (optional)
        Calculates the cophenetic correlation coefficient ``c`` of a
        hierarchical clustering defined by the linkage matrix `Z`
        of a set of :math:`n` observations in :math:`m`
        dimensions. `Y` is the condensed distance matrix from which
        `Z` was generated.

    Returns
    -------
    c : ndarray
        The cophentic correlation distance (if ``y`` is passed).
    d : ndarray
        The cophenetic distance matrix in condensed form. The
        :math:`ij` th entry is the cophenetic distance between
        original observations :math:`i` and :math:`j`.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    Zs = Z.shape
    n = Zs[0] + 1

    zz = np.zeros((n * (n-1)) // 2, dtype=np.double)
    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    Z = _convert_to_double(Z)

    _hierarchy.cophenetic_distances(Z, zz, int(n))
    if Y is None:
        return zz

    Y = np.asarray(Y, order='c')
    distance.is_valid_y(Y, throw=True, name='Y')

    z = zz.mean()
    y = Y.mean()
    Yy = Y - y
    Zz = zz - z
    numerator = (Yy * Zz)
    denomA = Yy**2
    denomB = Zz**2
    c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum()))
    return (c, zz)


def inconsistent(Z, d=2):
    r"""
    Calculates inconsistency statistics on a linkage.

    Note: This function behaves similarly to the MATLAB(TM)
    inconsistent function.

    Parameters
    ----------
    Z : ndarray
        The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical
        clustering).  See `linkage` documentation for more information on its
        form.
    d : int, optional
        The number of links up to `d` levels below each non-singleton cluster.

    Returns
    -------
    R : ndarray
        A :math:`(n-1)` by 5 matrix where the ``i``'th row contains the link
        statistics for the non-singleton cluster ``i``. The link statistics are
        computed over the link heights for links :math:`d` levels below the
        cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard
        deviation of the link heights, respectively; ``R[i,2]`` is the number
        of links included in the calculation; and ``R[i,3]`` is the
        inconsistency coefficient,

        .. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]}

    """
    Z = np.asarray(Z, order='c')

    Zs = Z.shape
    is_valid_linkage(Z, throw=True, name='Z')
    if (not d == np.floor(d)) or d < 0:
        raise ValueError('The second argument d must be a nonnegative '
                         'integer value.')

    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    [Z] = _copy_arrays_if_base_present([Z])

    n = Zs[0] + 1
    R = np.zeros((n - 1, 4), dtype=np.double)

    _hierarchy.inconsistent(Z, R, int(n), int(d))
    return R


def from_mlab_linkage(Z):
    """
    Converts a linkage matrix generated by MATLAB(TM) to a new
    linkage matrix compatible with this module.

    The conversion does two things:

     * the indices are converted from ``1..N`` to ``0..(N-1)`` form,
       and

     * a fourth column Z[:,3] is added where Z[i,3] is represents the
       number of original observations (leaves) in the non-singleton
       cluster i.

    This function is useful when loading in linkages from legacy data
    files generated by MATLAB.

    Parameters
    ----------
    Z : ndarray
        A linkage matrix generated by MATLAB(TM).

    Returns
    -------
    ZS : ndarray
        A linkage matrix compatible with this library.

    """
    Z = np.asarray(Z, dtype=np.double, order='c')
    Zs = Z.shape

    # If it's empty, return it.
    if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
        return Z.copy()

    if len(Zs) != 2:
        raise ValueError("The linkage array must be rectangular.")

    # If it contains no rows, return it.
    if Zs[0] == 0:
        return Z.copy()

    Zpart = Z.copy()
    if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]:
        raise ValueError('The format of the indices is not 1..N')

    Zpart[:, 0:2] -= 1.0
    CS = np.zeros((Zs[0],), dtype=np.double)
    _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1)
    return np.hstack([Zpart, CS.reshape(Zs[0], 1)])


def to_mlab_linkage(Z):
    """
    Converts a linkage matrix to a MATLAB(TM) compatible one.

    Converts a linkage matrix ``Z`` generated by the linkage function
    of this module to a MATLAB(TM) compatible one. The return linkage
    matrix has the last column removed and the cluster indices are
    converted to ``1..N`` indexing.

    Parameters
    ----------
    Z : ndarray
        A linkage matrix generated by this library.

    Returns
    -------
    to_mlab_linkage : ndarray
        A linkage matrix compatible with MATLAB(TM)'s hierarchical
        clustering functions.

        The return linkage matrix has the last column removed
        and the cluster indices are converted to ``1..N`` indexing.

    """
    Z = np.asarray(Z, order='c', dtype=np.double)
    Zs = Z.shape
    if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
        return Z.copy()
    is_valid_linkage(Z, throw=True, name='Z')

    ZP = Z[:, 0:3].copy()
    ZP[:, 0:2] += 1.0

    return ZP


def is_monotonic(Z):
    """
    Returns True if the linkage passed is monotonic.

    The linkage is monotonic if for every cluster :math:`s` and :math:`t`
    joined, the distance between them is no less than the distance
    between any previously joined clusters.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix to check for monotonicity.

    Returns
    -------
    b : bool
        A boolean indicating whether the linkage is monotonic.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    # We expect the i'th value to be greater than its successor.
    return (Z[1:, 2] >= Z[:-1, 2]).all()


def is_valid_im(R, warning=False, throw=False, name=None):
    """Returns True if the inconsistency matrix passed is valid.

    It must be a :math:`n` by 4 numpy array of doubles. The standard
    deviations ``R[:,1]`` must be nonnegative. The link counts
    ``R[:,2]`` must be positive and no greater than :math:`n-1`.

    Parameters
    ----------
    R : ndarray
        The inconsistency matrix to check for validity.
    warning : bool, optional
         When True, issues a Python warning if the linkage
         matrix passed is invalid.
    throw : bool, optional
         When True, throws a Python exception if the linkage
         matrix passed is invalid.
    name : str, optional
         This string refers to the variable name of the invalid
         linkage matrix.

    Returns
    -------
    b : bool
        True if the inconsistency matrix is valid.

    """
    R = np.asarray(R, order='c')
    valid = True
    name_str = "%r " % name if name else ''
    try:
        if type(R) != np.ndarray:
            raise TypeError('Variable %spassed as inconsistency matrix is not '
                            'a numpy array.' % name_str)
        if R.dtype != np.double:
            raise TypeError('Inconsistency matrix %smust contain doubles '
                            '(double).' % name_str)
        if len(R.shape) != 2:
            raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. '
                             'be two-dimensional).' % name_str)
        if R.shape[1] != 4:
            raise ValueError('Inconsistency matrix %smust have 4 columns.' %
                             name_str)
        if R.shape[0] < 1:
            raise ValueError('Inconsistency matrix %smust have at least one '
                             'row.' % name_str)
        if (R[:, 0] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'height means.' % name_str)
        if (R[:, 1] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'height standard deviations.' % name_str)
        if (R[:, 2] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'counts.' % name_str)
    except Exception as e:
        if throw:
            raise
        if warning:
            _warning(str(e))
        valid = False

    return valid


def is_valid_linkage(Z, warning=False, throw=False, name=None):
    """
    Checks the validity of a linkage matrix.

    A linkage matrix is valid if it is a two dimensional array (type double)
    with :math:`n` rows and 4 columns.  The first two columns must contain
    indices between 0 and :math:`2n-1`. For a given row ``i``, the following
    two expressions have to hold:

    .. math::

        0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1
        0 \\leq Z[i,1] \\leq i+n-1

    I.e. a cluster cannot join another cluster unless the cluster being joined
    has been generated.

    Parameters
    ----------
    Z : array_like
        Linkage matrix.
    warning : bool, optional
        When True, issues a Python warning if the linkage
        matrix passed is invalid.
    throw : bool, optional
        When True, throws a Python exception if the linkage
        matrix passed is invalid.
    name : str, optional
           This string refers to the variable name of the invalid
           linkage matrix.

    Returns
    -------
    b : bool
        True if the inconsistency matrix is valid.

    """
    Z = np.asarray(Z, order='c')
    valid = True
    name_str = "%r " % name if name else ''
    try:
        if type(Z) != np.ndarray:
            raise TypeError('Passed linkage argument %sis not a valid array.' %
                            name_str)
        if Z.dtype != np.double:
            raise TypeError('Linkage matrix %smust contain doubles.' % name_str)
        if len(Z.shape) != 2:
            raise ValueError('Linkage matrix %smust have shape=2 (i.e. be '
                             'two-dimensional).' % name_str)
        if Z.shape[1] != 4:
            raise ValueError('Linkage matrix %smust have 4 columns.' % name_str)
        if Z.shape[0] == 0:
            raise ValueError('Linkage must be computed on at least two '
                             'observations.')
        n = Z.shape[0]
        if n > 1:
            if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()):
                raise ValueError('Linkage %scontains negative indices.' %
                                 name_str)
            if (Z[:, 2] < 0).any():
                raise ValueError('Linkage %scontains negative distances.' %
                                 name_str)
            if (Z[:, 3] < 0).any():
                raise ValueError('Linkage %scontains negative counts.' %
                                 name_str)
        if _check_hierarchy_uses_cluster_before_formed(Z):
            raise ValueError('Linkage %suses non-singleton cluster before '
                             'it is formed.' % name_str)
        if _check_hierarchy_uses_cluster_more_than_once(Z):
            raise ValueError('Linkage %suses the same cluster more than once.'
                             % name_str)
    except Exception as e:
        if throw:
            raise
        if warning:
            _warning(str(e))
        valid = False

    return valid


def _check_hierarchy_uses_cluster_before_formed(Z):
    n = Z.shape[0] + 1
    for i in xrange(0, n - 1):
        if Z[i, 0] >= n + i or Z[i, 1] >= n + i:
            return True
    return False


def _check_hierarchy_uses_cluster_more_than_once(Z):
    n = Z.shape[0] + 1
    chosen = set([])
    for i in xrange(0, n - 1):
        if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]:
            return True
        chosen.add(Z[i, 0])
        chosen.add(Z[i, 1])
    return False


def _check_hierarchy_not_all_clusters_used(Z):
    n = Z.shape[0] + 1
    chosen = set([])
    for i in xrange(0, n - 1):
        chosen.add(int(Z[i, 0]))
        chosen.add(int(Z[i, 1]))
    must_chosen = set(range(0, 2 * n - 2))
    return len(must_chosen.difference(chosen)) > 0


def num_obs_linkage(Z):
    """
    Returns the number of original observations of the linkage matrix
    passed.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix on which to perform the operation.

    Returns
    -------
    n : int
        The number of original observations in the linkage.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    return (Z.shape[0] + 1)


def correspond(Z, Y):
    """
    Checks for correspondence between linkage and condensed distance matrices

    They must have the same number of original observations for
    the check to succeed.

    This function is useful as a sanity check in algorithms that make
    extensive use of linkage and distance matrices that must
    correspond to the same set of original observations.

    Parameters
    ----------
    Z : array_like
        The linkage matrix to check for correspondence.
    Y : array_like
        The condensed distance matrix to check for correspondence.

    Returns
    -------
    b : bool
        A boolean indicating whether the linkage matrix and distance
        matrix could possibly correspond to one another.

    """
    is_valid_linkage(Z, throw=True)
    distance.is_valid_y(Y, throw=True)
    Z = np.asarray(Z, order='c')
    Y = np.asarray(Y, order='c')
    return distance.num_obs_y(Y) == num_obs_linkage(Z)


def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None):
    """
    Forms flat clusters from the hierarchical clustering defined by
    the linkage matrix ``Z``.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded with the matrix returned
        by the `linkage` function.
    t : float
        The threshold to apply when forming flat clusters.
    criterion : str, optional
        The criterion to use in forming flat clusters. This can
        be any of the following values:

          ``inconsistent`` : If a cluster node and all its
              descendants have an inconsistent value less than or equal
              to `t` then all its leaf descendants belong to the
              same flat cluster. When no non-singleton cluster meets
              this criterion, every node is assigned to its own
              cluster. (Default)

          ``distance`` : Forms flat clusters so that the original
              observations in each flat cluster have no greater a
              cophenetic distance than `t`.

          ``maxclust`` : Finds a minimum threshold ``r`` so that
              the cophenetic distance between any two original
              observations in the same flat cluster is no more than
              ``r`` and no more than `t` flat clusters are formed.

          ``monocrit`` : Forms a flat cluster from a cluster node c
              with index i when ``monocrit[j] <= t``.

              For example, to threshold on the maximum mean distance
              as computed in the inconsistency matrix R with a
              threshold of 0.8 do::

                  MR = maxRstat(Z, R, 3)
                  cluster(Z, t=0.8, criterion='monocrit', monocrit=MR)

          ``maxclust_monocrit`` : Forms a flat cluster from a
              non-singleton cluster node ``c`` when ``monocrit[i] <=
              r`` for all cluster indices ``i`` below and including
              ``c``. ``r`` is minimized such that no more than ``t``
              flat clusters are formed. monocrit must be
              monotonic. For example, to minimize the threshold t on
              maximum inconsistency values so that no more than 3 flat
              clusters are formed, do::

                  MI = maxinconsts(Z, R)
                  cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI)

    depth : int, optional
        The maximum depth to perform the inconsistency calculation.
        It has no meaning for the other criteria. Default is 2.
    R : ndarray, optional
        The inconsistency matrix to use for the 'inconsistent'
        criterion. This matrix is computed if not provided.
    monocrit : ndarray, optional
        An array of length n-1. `monocrit[i]` is the
        statistics upon which non-singleton i is thresholded. The
        monocrit vector must be monotonic, i.e. given a node c with
        index i, for all node indices j corresponding to nodes
        below c, ``monocrit[i] >= monocrit[j]``.

    Returns
    -------
    fcluster : ndarray
        An array of length n. T[i] is the flat cluster number to
        which original observation i belongs.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    n = Z.shape[0] + 1
    T = np.zeros((n,), dtype='i')

    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    [Z] = _copy_arrays_if_base_present([Z])

    if criterion == 'inconsistent':
        if R is None:
            R = inconsistent(Z, depth)
        else:
            R = np.asarray(R, order='c')
            is_valid_im(R, throw=True, name='R')
            # Since the C code does not support striding using strides.
            # The dimensions are used instead.
            [R] = _copy_arrays_if_base_present([R])
        _hierarchy.cluster_in(Z, R, T, float(t), int(n))
    elif criterion == 'distance':
        _hierarchy.cluster_dist(Z, T, float(t), int(n))
    elif criterion == 'maxclust':
        _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t))
    elif criterion == 'monocrit':
        [monocrit] = _copy_arrays_if_base_present([monocrit])
        _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n))
    elif criterion == 'maxclust_monocrit':
        [monocrit] = _copy_arrays_if_base_present([monocrit])
        _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t))
    else:
        raise ValueError('Invalid cluster formation criterion: %s'
                         % str(criterion))
    return T


def fclusterdata(X, t, criterion='inconsistent',
                 metric='euclidean', depth=2, method='single', R=None):
    """
    Cluster observation data using a given metric.

    Clusters the original observations in the n-by-m data
    matrix X (n observations in m dimensions), using the euclidean
    distance metric to calculate distances between original observations,
    performs hierarchical clustering using the single linkage algorithm,
    and forms flat clusters using the inconsistency method with `t` as the
    cut-off threshold.

    A one-dimensional array T of length n is returned. T[i] is the index
    of the flat cluster to which the original observation i belongs.

    Parameters
    ----------
    X : (N, M) ndarray
        N by M data matrix with N observations in M dimensions.
    t : float
        The threshold to apply when forming flat clusters.
    criterion : str, optional
        Specifies the criterion for forming flat clusters.  Valid
        values are 'inconsistent' (default), 'distance', or 'maxclust'
        cluster formation algorithms. See `fcluster` for descriptions.
    metric : str, optional
        The distance metric for calculating pairwise distances. See
        `distance.pdist` for descriptions and linkage to verify
        compatibility with the linkage method.
    depth : int, optional
        The maximum depth for the inconsistency calculation. See
        `inconsistent` for more information.
    method : str, optional
        The linkage method to use (single, complete, average,
        weighted, median centroid, ward). See `linkage` for more
        information. Default is "single".
    R : ndarray, optional
        The inconsistency matrix. It will be computed if necessary
        if it is not passed.

    Returns
    -------
    fclusterdata : ndarray
        A vector of length n. T[i] is the flat cluster number to
        which original observation i belongs.

    Notes
    -----
    This function is similar to the MATLAB function clusterdata.

    """
    X = np.asarray(X, order='c', dtype=np.double)

    if type(X) != np.ndarray or len(X.shape) != 2:
        raise TypeError('The observation matrix X must be an n by m numpy '
                        'array.')

    Y = distance.pdist(X, metric=metric)
    Z = linkage(Y, method=method)
    if R is None:
        R = inconsistent(Z, d=depth)
    else:
        R = np.asarray(R, order='c')
    T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t)
    return T


def leaves_list(Z):
    """
    Returns a list of leaf node ids

    The return corresponds to the observation vector index as it appears
    in the tree from left to right. Z is a linkage matrix.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix.  `Z` is
        a linkage matrix.  See ``linkage`` for more information.

    Returns
    -------
    leaves_list : ndarray
        The list of leaf node ids.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    n = Z.shape[0] + 1
    ML = np.zeros((n,), dtype='i')
    [Z] = _copy_arrays_if_base_present([Z])
    _hierarchy.prelist(Z, ML, int(n))
    return ML


# Maps number of leaves to text size.
#
# p <= 20, size="12"
# 20 < p <= 30, size="10"
# 30 < p <= 50, size="8"
# 50 < p <= np.inf, size="6"

_dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5}
_drotation = {20: 0, 40: 45, np.inf: 90}
_dtextsortedkeys = list(_dtextsizes.keys())
_dtextsortedkeys.sort()
_drotationsortedkeys = list(_drotation.keys())
_drotationsortedkeys.sort()


def _remove_dups(L):
    """
    Removes duplicates AND preserves the original order of the elements.
    The set class is not guaranteed to do this.
    """
    seen_before = set([])
    L2 = []
    for i in L:
        if i not in seen_before:
            seen_before.add(i)
            L2.append(i)
    return L2


def _get_tick_text_size(p):
    for k in _dtextsortedkeys:
        if p <= k:
            return _dtextsizes[k]


def _get_tick_rotation(p):
    for k in _drotationsortedkeys:
        if p <= k:
            return _drotation[k]


def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation,
                     no_labels, color_list, leaf_font_size=None,
                     leaf_rotation=None, contraction_marks=None,
                     ax=None, above_threshold_color='b'):
    # Import matplotlib here so that it's not imported unless dendrograms
    # are plotted. Raise an informative error if importing fails.
    try:
        # if an axis is provided, don't use pylab at all
        if ax is None:
            import matplotlib.pylab
        import matplotlib.patches
        import matplotlib.collections
    except ImportError:
        raise ImportError("You must install the matplotlib library to plot "
                          "the dendrogram. Use no_plot=True to calculate the "
                          "dendrogram without plotting.")

    if ax is None:
        ax = matplotlib.pylab.gca()
        # if we're using pylab, we want to trigger a draw at the end
        trigger_redraw = True
    else:
        trigger_redraw = False

    # Independent variable plot width
    ivw = len(ivl) * 10
    # Dependent variable plot height
    dvw = mh + mh * 0.05

    iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10)
    if orientation in ('top', 'bottom'):
        if orientation == 'top':
            ax.set_ylim([0, dvw])
            ax.set_xlim([0, ivw])
        else:
            ax.set_ylim([dvw, 0])
            ax.set_xlim([0, ivw])

        xlines = icoords
        ylines = dcoords
        if no_labels:
            ax.set_xticks([])
            ax.set_xticklabels([])
        else:
            ax.set_xticks(iv_ticks)

            if orientation == 'top':
                ax.xaxis.set_ticks_position('bottom')
            else:
                ax.xaxis.set_ticks_position('top')

            # Make the tick marks invisible because they cover up the links
            for line in ax.get_xticklines():
                line.set_visible(False)

            leaf_rot = float(_get_tick_rotation(len(ivl))) if (
                                    leaf_rotation is None) else leaf_rotation
            leaf_font = float(_get_tick_text_size(len(ivl))) if (
                                    leaf_font_size is None) else leaf_font_size
            ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font)

    elif orientation in ('left', 'right'):
        if orientation == 'left':
            ax.set_xlim([dvw, 0])
            ax.set_ylim([0, ivw])
        else:
            ax.set_xlim([0, dvw])
            ax.set_ylim([0, ivw])

        xlines = dcoords
        ylines = icoords
        if no_labels:
            ax.set_yticks([])
            ax.set_yticklabels([])
        else:
            ax.set_yticks(iv_ticks)

            if orientation == 'left':
                ax.yaxis.set_ticks_position('right')
            else:
                ax.yaxis.set_ticks_position('left')

            # Make the tick marks invisible because they cover up the links
            for line in ax.get_yticklines():
                line.set_visible(False)

            leaf_font = float(_get_tick_text_size(len(ivl))) if (
                                    leaf_font_size is None) else leaf_font_size

            if leaf_rotation is not None:
                ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font)
            else:
                ax.set_yticklabels(ivl, size=leaf_font)

    # Let's use collections instead. This way there is a separate legend item
    # for each tree grouping, rather than stupidly one for each line segment.
    colors_used = _remove_dups(color_list)
    color_to_lines = {}
    for color in colors_used:
        color_to_lines[color] = []
    for (xline, yline, color) in zip(xlines, ylines, color_list):
        color_to_lines[color].append(list(zip(xline, yline)))

    colors_to_collections = {}
    # Construct the collections.
    for color in colors_used:
        coll = matplotlib.collections.LineCollection(color_to_lines[color],
                                                     colors=(color,))
        colors_to_collections[color] = coll

    # Add all the groupings below the color threshold.
    for color in colors_used:
        if color != above_threshold_color:
            ax.add_collection(colors_to_collections[color])
    # If there's a grouping of links above the color threshold, it goes last.
    if above_threshold_color in colors_to_collections:
        ax.add_collection(colors_to_collections[above_threshold_color])

    if contraction_marks is not None:
        Ellipse = matplotlib.patches.Ellipse
        for (x, y) in contraction_marks:
            if orientation in ('left', 'right'):
                e = Ellipse((y, x), width=dvw / 100, height=1.0)
            else:
                e = Ellipse((x, y), width=1.0, height=dvw / 100)
            ax.add_artist(e)
            e.set_clip_box(ax.bbox)
            e.set_alpha(0.5)
            e.set_facecolor('k')

    if trigger_redraw:
        matplotlib.pylab.draw_if_interactive()


_link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k']


def set_link_color_palette(palette):
    """
    Set list of matplotlib color codes for use by dendrogram.

    Note that this palette is global (i.e. setting it once changes the colors
    for all subsequent calls to `dendrogram`) and that it affects only the
    the colors below ``color_threshold``.

    Note that `dendrogram` also accepts a custom coloring function through its
    ``link_color_func`` keyword, which is more flexible and non-global.

    Parameters
    ----------
    palette : list of str or None
        A list of matplotlib color codes.  The order of the color codes is the
        order in which the colors are cycled through when color thresholding in
        the dendrogram.

        If ``None``, resets the palette to its default (which is
        ``['g', 'r', 'c', 'm', 'y', 'k']``).

    Returns
    -------
    None

    See Also
    --------
    dendrogram

    Notes
    -----
    Ability to reset the palette with ``None`` added in Scipy 0.17.0.

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., 400.,
    ...                    754., 564., 138., 219., 869., 669.])
    >>> Z = hierarchy.linkage(ytdist, 'single')
    >>> dn = hierarchy.dendrogram(Z, no_plot=True)
    >>> dn['color_list']
    ['g', 'b', 'b', 'b', 'b']
    >>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])
    >>> dn = hierarchy.dendrogram(Z, no_plot=True)
    >>> dn['color_list']
    ['c', 'b', 'b', 'b', 'b']
    >>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,
    ...                           above_threshold_color='k')
    >>> dn['color_list']
    ['c', 'm', 'm', 'k', 'k']

    Now reset the color palette to its default:

    >>> hierarchy.set_link_color_palette(None)

    """
    if palette is None:
        # reset to its default
        palette = ['g', 'r', 'c', 'm', 'y', 'k']
    elif type(palette) not in (list, tuple):
        raise TypeError("palette must be a list or tuple")
    _ptypes = [isinstance(p, string_types) for p in palette]

    if False in _ptypes:
        raise TypeError("all palette list elements must be color strings")

    for i in list(_link_line_colors):
        _link_line_colors.remove(i)
    _link_line_colors.extend(list(palette))


def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
               get_leaves=True, orientation='top', labels=None,
               count_sort=False, distance_sort=False, show_leaf_counts=True,
               no_plot=False, no_labels=False, leaf_font_size=None,
               leaf_rotation=None, leaf_label_func=None,
               show_contracted=False, link_color_func=None, ax=None,
               above_threshold_color='b'):
    """
    Plots the hierarchical clustering as a dendrogram.

    The dendrogram illustrates how each cluster is
    composed by drawing a U-shaped link between a non-singleton
    cluster and its children. The height of the top of the U-link is
    the distance between its children clusters. It is also the
    cophenetic distance between original observations in the two
    children clusters. It is expected that the distances in Z[:,2] be
    monotonic, otherwise crossings appear in the dendrogram.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix encoding the hierarchical clustering to
        render as a dendrogram. See the ``linkage`` function for more
        information on the format of ``Z``.
    p : int, optional
        The ``p`` parameter for ``truncate_mode``.
    truncate_mode : str, optional
        The dendrogram can be hard to read when the original
        observation matrix from which the linkage is derived is
        large. Truncation is used to condense the dendrogram. There
        are several modes:

        ``None/'none'``
          No truncation is performed (Default).

        ``'lastp'``
          The last ``p`` non-singleton formed in the linkage are the only
          non-leaf nodes in the linkage; they correspond to rows
          ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are
          contracted into leaf nodes.

        ``'mlab'``
          This corresponds to MATLAB(TM) behavior. (not implemented yet)

        ``'level'/'mtica'``
          No more than ``p`` levels of the dendrogram tree are displayed.
          This corresponds to Mathematica(TM) behavior.

    color_threshold : double, optional
        For brevity, let :math:`t` be the ``color_threshold``.
        Colors all the descendent links below a cluster node
        :math:`k` the same color if :math:`k` is the first node below
        the cut threshold :math:`t`. All links connecting nodes with
        distances greater than or equal to the threshold are colored
        blue. If :math:`t` is less than or equal to zero, all nodes
        are colored blue. If ``color_threshold`` is None or
        'default', corresponding with MATLAB(TM) behavior, the
        threshold is set to ``0.7*max(Z[:,2])``.
    get_leaves : bool, optional
        Includes a list ``R['leaves']=H`` in the result
        dictionary. For each :math:`i`, ``H[i] == j``, cluster node
        ``j`` appears in position ``i`` in the left-to-right traversal
        of the leaves, where :math:`j < 2n-1` and :math:`i < n`.
    orientation : str, optional
        The direction to plot the dendrogram, which can be any
        of the following strings:

        ``'top'``
          Plots the root at the top, and plot descendent links going downwards.
          (default).

        ``'bottom'``
          Plots the root at the bottom, and plot descendent links going
          upwards.

        ``'left'``
          Plots the root at the left, and plot descendent links going right.

        ``'right'``
          Plots the root at the right, and plot descendent links going left.

    labels : ndarray, optional
        By default ``labels`` is None so the index of the original observation
        is used to label the leaf nodes.  Otherwise, this is an :math:`n`
        -sized list (or tuple). The ``labels[i]`` value is the text to put
        under the :math:`i` th leaf node only if it corresponds to an original
        observation and not a non-singleton cluster.
    count_sort : str or bool, optional
        For each node n, the order (visually, from left-to-right) n's
        two descendent links are plotted is determined by this
        parameter, which can be any of the following values:

        ``False``
          Nothing is done.

        ``'ascending'`` or ``True``
          The child with the minimum number of original objects in its cluster
          is plotted first.

        ``'descendent'``
          The child with the maximum number of original objects in its cluster
          is plotted first.

        Note ``distance_sort`` and ``count_sort`` cannot both be True.
    distance_sort : str or bool, optional
        For each node n, the order (visually, from left-to-right) n's
        two descendent links are plotted is determined by this
        parameter, which can be any of the following values:

        ``False``
          Nothing is done.

        ``'ascending'`` or ``True``
          The child with the minimum distance between its direct descendents is
          plotted first.

        ``'descending'``
          The child with the maximum distance between its direct descendents is
          plotted first.

        Note ``distance_sort`` and ``count_sort`` cannot both be True.
    show_leaf_counts : bool, optional
         When True, leaf nodes representing :math:`k>1` original
         observation are labeled with the number of observations they
         contain in parentheses.
    no_plot : bool, optional
        When True, the final rendering is not performed. This is
        useful if only the data structures computed for the rendering
        are needed or if matplotlib is not available.
    no_labels : bool, optional
        When True, no labels appear next to the leaf nodes in the
        rendering of the dendrogram.
    leaf_rotation : double, optional
        Specifies the angle (in degrees) to rotate the leaf
        labels. When unspecified, the rotation is based on the number of
        nodes in the dendrogram (default is 0).
    leaf_font_size : int, optional
        Specifies the font size (in points) of the leaf labels. When
        unspecified, the size based on the number of nodes in the
        dendrogram.
    leaf_label_func : lambda or function, optional
        When leaf_label_func is a callable function, for each
        leaf with cluster index :math:`k < 2n-1`. The function
        is expected to return a string with the label for the
        leaf.

        Indices :math:`k < n` correspond to original observations
        while indices :math:`k \\geq n` correspond to non-singleton
        clusters.

        For example, to label singletons with their node id and
        non-singletons with their id, count, and inconsistency
        coefficient, simply do::

            # First define the leaf label function.
            def llf(id):
                if id < n:
                    return str(id)
                else:
                    return '[%d %d %1.2f]' % (id, count, R[n-id,3])
            # The text for the leaf nodes is going to be big so force
            # a rotation of 90 degrees.
            dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

    show_contracted : bool, optional
        When True the heights of non-singleton nodes contracted
        into a leaf node are plotted as crosses along the link
        connecting that leaf node.  This really is only useful when
        truncation is used (see ``truncate_mode`` parameter).
    link_color_func : callable, optional
        If given, `link_color_function` is called with each non-singleton id
        corresponding to each U-shaped link it will paint. The function is
        expected to return the color to paint the link, encoded as a matplotlib
        color string code. For example::

            dendrogram(Z, link_color_func=lambda k: colors[k])

        colors the direct links below each untruncated non-singleton node
        ``k`` using ``colors[k]``.
    ax : matplotlib Axes instance, optional
        If None and `no_plot` is not True, the dendrogram will be plotted
        on the current axes.  Otherwise if `no_plot` is not True the
        dendrogram will be plotted on the given ``Axes`` instance. This can be
        useful if the dendrogram is part of a more complex figure.
    above_threshold_color : str, optional
        This matplotlib color string sets the color of the links above the
        color_threshold. The default is 'b'.

    Returns
    -------
    R : dict
        A dictionary of data structures computed to render the
        dendrogram. Its has the following keys:

        ``'color_list'``
          A list of color names. The k'th element represents the color of the
          k'th link.

        ``'icoord'`` and ``'dcoord'``
          Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]``
          where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]``
          where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is
          ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``.

        ``'ivl'``
          A list of labels corresponding to the leaf nodes.

        ``'leaves'``
          For each i, ``H[i] == j``, cluster node ``j`` appears in position
          ``i`` in the left-to-right traversal of the leaves, where
          :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the
          ``i``-th leaf node corresponds to an original observation.
          Otherwise, it corresponds to a non-singleton cluster.

    See Also
    --------
    linkage, set_link_color_palette

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> import matplotlib.pyplot as plt

    A very basic example:

    >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
    ...                    400., 754., 564., 138., 219., 869., 669.])
    >>> Z = hierarchy.linkage(ytdist, 'single')
    >>> plt.figure()
    >>> dn = hierarchy.dendrogram(Z)

    Now plot in given axes, improve the color scheme and use both vertical and
    horizontal orientations:

    >>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k'])
    >>> fig, axes = plt.subplots(1, 2, figsize=(8, 3))
    >>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y',
    ...                            orientation='top')
    >>> dn2 = hierarchy.dendrogram(Z, ax=axes[1], above_threshold_color='#bcbddc',
    ...                            orientation='right')
    >>> hierarchy.set_link_color_palette(None)  # reset to default after use
    >>> plt.show()

    """
    # This feature was thought about but never implemented (still useful?):
    #
    #         ... = dendrogram(..., leaves_order=None)
    #
    #         Plots the leaves in the order specified by a vector of
    #         original observation indices. If the vector contains duplicates
    #         or results in a crossing, an exception will be thrown. Passing
    #         None orders leaf nodes based on the order they appear in the
    #         pre-order traversal.
    Z = np.asarray(Z, order='c')

    if orientation not in ["top", "left", "bottom", "right"]:
        raise ValueError("orientation must be one of 'top', 'left', "
                         "'bottom', or 'right'")

    is_valid_linkage(Z, throw=True, name='Z')
    Zs = Z.shape
    n = Zs[0] + 1
    if type(p) in (int, float):
        p = int(p)
    else:
        raise TypeError('The second argument must be a number')

    if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None):
        raise ValueError('Invalid truncation mode.')

    if truncate_mode == 'lastp' or truncate_mode == 'mlab':
        if p > n or p == 0:
            p = n

    if truncate_mode == 'mtica' or truncate_mode == 'level':
        if p <= 0:
            p = np.inf

    if get_leaves:
        lvs = []
    else:
        lvs = None

    icoord_list = []
    dcoord_list = []
    color_list = []
    current_color = [0]
    currently_below_threshold = [False]
    ivl = []  # list of leaves

    if color_threshold is None or (isinstance(color_threshold, string_types) and
                                   color_threshold == 'default'):
        color_threshold = max(Z[:, 2]) * 0.7

    R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl,
         'leaves': lvs, 'color_list': color_list}

    # Empty list will be filled in _dendrogram_calculate_info
    contraction_marks = [] if show_contracted else None

    _dendrogram_calculate_info(
        Z=Z, p=p,
        truncate_mode=truncate_mode,
        color_threshold=color_threshold,
        get_leaves=get_leaves,
        orientation=orientation,
        labels=labels,
        count_sort=count_sort,
        distance_sort=distance_sort,
        show_leaf_counts=show_leaf_counts,
        i=2*n - 2,
        iv=0.0,
        ivl=ivl,
        n=n,
        icoord_list=icoord_list,
        dcoord_list=dcoord_list,
        lvs=lvs,
        current_color=current_color,
        color_list=color_list,
        currently_below_threshold=currently_below_threshold,
        leaf_label_func=leaf_label_func,
        contraction_marks=contraction_marks,
        link_color_func=link_color_func,
        above_threshold_color=above_threshold_color)

    if not no_plot:
        mh = max(Z[:, 2])
        _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation,
                         no_labels, color_list,
                         leaf_font_size=leaf_font_size,
                         leaf_rotation=leaf_rotation,
                         contraction_marks=contraction_marks,
                         ax=ax,
                         above_threshold_color=above_threshold_color)

    return R


def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
                                i, labels):
    # If the leaf id structure is not None and is a list then the caller
    # to dendrogram has indicated that cluster id's corresponding to the
    # leaf nodes should be recorded.

    if lvs is not None:
        lvs.append(int(i))

    # If leaf node labels are to be displayed...
    if ivl is not None:
        # If a leaf_label_func has been provided, the label comes from the
        # string returned from the leaf_label_func, which is a function
        # passed to dendrogram.
        if leaf_label_func:
            ivl.append(leaf_label_func(int(i)))
        else:
            # Otherwise, if the dendrogram caller has passed a labels list
            # for the leaf nodes, use it.
            if labels is not None:
                ivl.append(labels[int(i - n)])
            else:
                # Otherwise, use the id as the label for the leaf.x
                ivl.append(str(int(i)))


def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
                                   i, labels, show_leaf_counts):
    # If the leaf id structure is not None and is a list then the caller
    # to dendrogram has indicated that cluster id's corresponding to the
    # leaf nodes should be recorded.

    if lvs is not None:
        lvs.append(int(i))
    if ivl is not None:
        if leaf_label_func:
            ivl.append(leaf_label_func(int(i)))
        else:
            if show_leaf_counts:
                ivl.append("(" + str(int(Z[i - n, 3])) + ")")
            else:
                ivl.append("")


def _append_contraction_marks(Z, iv, i, n, contraction_marks):
    _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
    _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)


def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks):
    if i >= n:
        contraction_marks.append((iv, Z[i - n, 2]))
        _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
        _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)


def _dendrogram_calculate_info(Z, p, truncate_mode,
                               color_threshold=np.inf, get_leaves=True,
                               orientation='top', labels=None,
                               count_sort=False, distance_sort=False,
                               show_leaf_counts=False, i=-1, iv=0.0,
                               ivl=[], n=0, icoord_list=[], dcoord_list=[],
                               lvs=None, mhr=False,
                               current_color=[], color_list=[],
                               currently_below_threshold=[],
                               leaf_label_func=None, level=0,
                               contraction_marks=None,
                               link_color_func=None,
                               above_threshold_color='b'):
    """
    Calculates the endpoints of the links as well as the labels for the
    the dendrogram rooted at the node with index i. iv is the independent
    variable value to plot the left-most leaf node below the root node i
    (if orientation='top', this would be the left-most x value where the
    plotting of this root node i and its descendents should begin).

    ivl is a list to store the labels of the leaf nodes. The leaf_label_func
    is called whenever ivl != None, labels == None, and
    leaf_label_func != None. When ivl != None and labels != None, the
    labels list is used only for labeling the leaf nodes. When
    ivl == None, no labels are generated for leaf nodes.

    When get_leaves==True, a list of leaves is built as they are visited
    in the dendrogram.

    Returns a tuple with l being the independent variable coordinate that
    corresponds to the midpoint of cluster to the left of cluster i if
    i is non-singleton, otherwise the independent coordinate of the leaf
    node if i is a leaf node.

    Returns
    -------
    A tuple (left, w, h, md), where:

      * left is the independent variable coordinate of the center of the
        the U of the subtree

      * w is the amount of space used for the subtree (in independent
        variable units)

      * h is the height of the subtree in dependent variable units

      * md is the ``max(Z[*,2]``) for all nodes ``*`` below and including
        the target node.

    """
    if n == 0:
        raise ValueError("Invalid singleton cluster count n.")

    if i == -1:
        raise ValueError("Invalid root cluster index i.")

    if truncate_mode == 'lastp':
        # If the node is a leaf node but corresponds to a non-single cluster,
        # its label is either the empty string or the number of original
        # observations belonging to cluster i.
        if 2 * n - p > i >= n:
            d = Z[i - n, 2]
            _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
                                           leaf_label_func, i, labels,
                                           show_leaf_counts)
            if contraction_marks is not None:
                _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
            return (iv + 5.0, 10.0, 0.0, d)
        elif i < n:
            _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                        leaf_label_func, i, labels)
            return (iv + 5.0, 10.0, 0.0, 0.0)
    elif truncate_mode in ('mtica', 'level'):
        if i > n and level > p:
            d = Z[i - n, 2]
            _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
                                           leaf_label_func, i, labels,
                                           show_leaf_counts)
            if contraction_marks is not None:
                _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
            return (iv + 5.0, 10.0, 0.0, d)
        elif i < n:
            _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                        leaf_label_func, i, labels)
            return (iv + 5.0, 10.0, 0.0, 0.0)
    elif truncate_mode in ('mlab',):
        pass

    # Otherwise, only truncate if we have a leaf node.
    #
    # If the truncate_mode is mlab, the linkage has been modified
    # with the truncated tree.
    #
    # Only place leaves if they correspond to original observations.
    if i < n:
        _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                    leaf_label_func, i, labels)
        return (iv + 5.0, 10.0, 0.0, 0.0)

    # !!! Otherwise, we don't have a leaf node, so work on plotting a
    # non-leaf node.
    # Actual indices of a and b
    aa = int(Z[i - n, 0])
    ab = int(Z[i - n, 1])
    if aa > n:
        # The number of singletons below cluster a
        na = Z[aa - n, 3]
        # The distance between a's two direct children.
        da = Z[aa - n, 2]
    else:
        na = 1
        da = 0.0
    if ab > n:
        nb = Z[ab - n, 3]
        db = Z[ab - n, 2]
    else:
        nb = 1
        db = 0.0

    if count_sort == 'ascending' or count_sort == True:
        # If a has a count greater than b, it and its descendents should
        # be drawn to the right. Otherwise, to the left.
        if na > nb:
            # The cluster index to draw to the left (ua) will be ab
            # and the one to draw to the right (ub) will be aa
            ua = ab
            ub = aa
        else:
            ua = aa
            ub = ab
    elif count_sort == 'descending':
        # If a has a count less than or equal to b, it and its
        # descendents should be drawn to the left. Otherwise, to
        # the right.
        if na > nb:
            ua = aa
            ub = ab
        else:
            ua = ab
            ub = aa
    elif distance_sort == 'ascending' or distance_sort == True:
        # If a has a distance greater than b, it and its descendents should
        # be drawn to the right. Otherwise, to the left.
        if da > db:
            ua = ab
            ub = aa
        else:
            ua = aa
            ub = ab
    elif distance_sort == 'descending':
        # If a has a distance less than or equal to b, it and its
        # descendents should be drawn to the left. Otherwise, to
        # the right.
        if da > db:
            ua = aa
            ub = ab
        else:
            ua = ab
            ub = aa
    else:
        ua = aa
        ub = ab

    # Updated iv variable and the amount of space used.
    (uiva, uwa, uah, uamd) = \
        _dendrogram_calculate_info(
            Z=Z, p=p,
            truncate_mode=truncate_mode,
            color_threshold=color_threshold,
            get_leaves=get_leaves,
            orientation=orientation,
            labels=labels,
            count_sort=count_sort,
            distance_sort=distance_sort,
            show_leaf_counts=show_leaf_counts,
            i=ua, iv=iv, ivl=ivl, n=n,
            icoord_list=icoord_list,
            dcoord_list=dcoord_list, lvs=lvs,
            current_color=current_color,
            color_list=color_list,
            currently_below_threshold=currently_below_threshold,
            leaf_label_func=leaf_label_func,
            level=level + 1, contraction_marks=contraction_marks,
            link_color_func=link_color_func,
            above_threshold_color=above_threshold_color)

    h = Z[i - n, 2]
    if h >= color_threshold or color_threshold <= 0:
        c = above_threshold_color

        if currently_below_threshold[0]:
            current_color[0] = (current_color[0] + 1) % len(_link_line_colors)
        currently_below_threshold[0] = False
    else:
        currently_below_threshold[0] = True
        c = _link_line_colors[current_color[0]]

    (uivb, uwb, ubh, ubmd) = \
        _dendrogram_calculate_info(
            Z=Z, p=p,
            truncate_mode=truncate_mode,
            color_threshold=color_threshold,
            get_leaves=get_leaves,
            orientation=orientation,
            labels=labels,
            count_sort=count_sort,
            distance_sort=distance_sort,
            show_leaf_counts=show_leaf_counts,
            i=ub, iv=iv + uwa, ivl=ivl, n=n,
            icoord_list=icoord_list,
            dcoord_list=dcoord_list, lvs=lvs,
            current_color=current_color,
            color_list=color_list,
            currently_below_threshold=currently_below_threshold,
            leaf_label_func=leaf_label_func,
            level=level + 1, contraction_marks=contraction_marks,
            link_color_func=link_color_func,
            above_threshold_color=above_threshold_color)

    max_dist = max(uamd, ubmd, h)

    icoord_list.append([uiva, uiva, uivb, uivb])
    dcoord_list.append([uah, h, h, ubh])
    if link_color_func is not None:
        v = link_color_func(int(i))
        if not isinstance(v, string_types):
            raise TypeError("link_color_func must return a matplotlib "
                            "color string!")
        color_list.append(v)
    else:
        color_list.append(c)

    return (((uiva + uivb) / 2), uwa + uwb, h, max_dist)


def is_isomorphic(T1, T2):
    """
    Determines if two different cluster assignments are equivalent.

    Parameters
    ----------
    T1 : array_like
        An assignment of singleton cluster ids to flat cluster ids.
    T2 : array_like
        An assignment of singleton cluster ids to flat cluster ids.

    Returns
    -------
    b : bool
        Whether the flat cluster assignments `T1` and `T2` are
        equivalent.

    """
    T1 = np.asarray(T1, order='c')
    T2 = np.asarray(T2, order='c')

    if type(T1) != np.ndarray:
        raise TypeError('T1 must be a numpy array.')
    if type(T2) != np.ndarray:
        raise TypeError('T2 must be a numpy array.')

    T1S = T1.shape
    T2S = T2.shape

    if len(T1S) != 1:
        raise ValueError('T1 must be one-dimensional.')
    if len(T2S) != 1:
        raise ValueError('T2 must be one-dimensional.')
    if T1S[0] != T2S[0]:
        raise ValueError('T1 and T2 must have the same number of elements.')
    n = T1S[0]
    d = {}
    for i in xrange(0, n):
        if T1[i] in d:
            if d[T1[i]] != T2[i]:
                return False
        else:
            d[T1[i]] = T2[i]
    return True


def maxdists(Z):
    """
    Returns the maximum distance between any non-singleton cluster.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        ``linkage`` for more information.

    Returns
    -------
    maxdists : ndarray
        A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents
        the maximum distance between any cluster (including
        singletons) below and including the node with index i. More
        specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the
        set of all node indices below and including node i.

    """
    Z = np.asarray(Z, order='c', dtype=np.double)
    is_valid_linkage(Z, throw=True, name='Z')

    n = Z.shape[0] + 1
    MD = np.zeros((n - 1,))
    [Z] = _copy_arrays_if_base_present([Z])
    _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n))
    return MD


def maxinconsts(Z, R):
    """
    Returns the maximum inconsistency coefficient for each
    non-singleton cluster and its descendents.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        ``linkage`` for more information.
    R : ndarray
        The inconsistency matrix.

    Returns
    -------
    MI : ndarray
        A monotonic ``(n-1)``-sized numpy array of doubles.

    """
    Z = np.asarray(Z, order='c')
    R = np.asarray(R, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    is_valid_im(R, throw=True, name='R')

    n = Z.shape[0] + 1
    if Z.shape[0] != R.shape[0]:
        raise ValueError("The inconsistency matrix and linkage matrix each "
                         "have a different number of rows.")
    MI = np.zeros((n - 1,))
    [Z, R] = _copy_arrays_if_base_present([Z, R])
    _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3)
    return MI


def maxRstat(Z, R, i):
    """
    Returns the maximum statistic for each non-singleton cluster and
    its descendents.

    Parameters
    ----------
    Z : array_like
        The hierarchical clustering encoded as a matrix. See `linkage` for more
        information.
    R : array_like
        The inconsistency matrix.
    i : int
        The column of `R` to use as the statistic.

    Returns
    -------
    MR : ndarray
        Calculates the maximum statistic for the i'th column of the
        inconsistency matrix `R` for each non-singleton cluster
        node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where
        ``Q(j)`` the set of all node ids corresponding to nodes below
        and including ``j``.

    """
    Z = np.asarray(Z, order='c')
    R = np.asarray(R, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    is_valid_im(R, throw=True, name='R')
    if type(i) is not int:
        raise TypeError('The third argument must be an integer.')
    if i < 0 or i > 3:
        raise ValueError('i must be an integer between 0 and 3 inclusive.')

    if Z.shape[0] != R.shape[0]:
        raise ValueError("The inconsistency matrix and linkage matrix each "
                         "have a different number of rows.")

    n = Z.shape[0] + 1
    MR = np.zeros((n - 1,))
    [Z, R] = _copy_arrays_if_base_present([Z, R])
    _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i)
    return MR


def leaders(Z, T):
    """
    Returns the root nodes in a hierarchical clustering.

    Returns the root nodes in a hierarchical clustering corresponding
    to a cut defined by a flat cluster assignment vector ``T``. See
    the ``fcluster`` function for more information on the format of ``T``.

    For each flat cluster :math:`j` of the :math:`k` flat clusters
    represented in the n-sized flat cluster assignment vector ``T``,
    this function finds the lowest cluster node :math:`i` in the linkage
    tree Z such that:

      * leaf descendents belong only to flat cluster j
        (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where
        :math:`S(i)` is the set of leaf ids of leaf nodes descendent
        with cluster node :math:`i`)

      * there does not exist a leaf that is not descendent with
        :math:`i` that also belongs to cluster :math:`j`
        (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`).  If
        this condition is violated, ``T`` is not a valid cluster
        assignment vector, and an exception will be thrown.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        ``linkage`` for more information.
    T : ndarray
        The flat cluster assignment vector.

    Returns
    -------
    L : ndarray
        The leader linkage node id's stored as a k-element 1-D array
        where ``k`` is the number of flat clusters found in ``T``.

        ``L[j]=i`` is the linkage cluster node id that is the
        leader of flat cluster with id M[j].  If ``i < n``, ``i``
        corresponds to an original observation, otherwise it
        corresponds to a non-singleton cluster.

        For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with
        id 8's leader is linkage node 2.
    M : ndarray
        The leader linkage node id's stored as a k-element 1-D array where
        ``k`` is the number of flat clusters found in ``T``. This allows the
        set of flat cluster ids to be any arbitrary set of ``k`` integers.

    """
    Z = np.asarray(Z, order='c')
    T = np.asarray(T, order='c')
    if type(T) != np.ndarray or T.dtype != 'i':
        raise TypeError('T must be a one-dimensional numpy array of integers.')
    is_valid_linkage(Z, throw=True, name='Z')
    if len(T) != Z.shape[0] + 1:
        raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.')

    Cl = np.unique(T)
    kk = len(Cl)
    L = np.zeros((kk,), dtype='i')
    M = np.zeros((kk,), dtype='i')
    n = Z.shape[0] + 1
    [Z, T] = _copy_arrays_if_base_present([Z, T])
    s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n))
    if s >= 0:
        raise ValueError(('T is not a valid assignment vector. Error found '
                          'when examining linkage node %d (< 2n-1).') % s)
    return (L, M)