File: realtransforms.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (479 lines) | stat: -rw-r--r-- 15,426 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
"""
Real spectrum tranforms (DCT, DST, MDCT)
"""
from __future__ import division, print_function, absolute_import


__all__ = ['dct', 'idct', 'dst', 'idst']

import numpy as np
from scipy.fftpack import _fftpack
from scipy.fftpack.basic import _datacopied, _fix_shape, _asfarray

import atexit
atexit.register(_fftpack.destroy_ddct1_cache)
atexit.register(_fftpack.destroy_ddct2_cache)
atexit.register(_fftpack.destroy_dct1_cache)
atexit.register(_fftpack.destroy_dct2_cache)

atexit.register(_fftpack.destroy_ddst1_cache)
atexit.register(_fftpack.destroy_ddst2_cache)
atexit.register(_fftpack.destroy_dst1_cache)
atexit.register(_fftpack.destroy_dst2_cache)


def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Discrete Cosine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3}, optional
        Type of the DCT (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dct is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    idct : Inverse DCT

    Notes
    -----
    For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
    MATLAB ``dct(x)``.

    There are theoretically 8 types of the DCT, only the first 3 types are
    implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
    Inverse DCT generally refers to DCT type 3.

    **Type I**

    There are several definitions of the DCT-I; we use the following
    (for ``norm=None``)::

                                         N-2
      y[k] = x[0] + (-1)**k x[N-1] + 2 * sum x[n]*cos(pi*k*n/(N-1))
                                         n=1

    Only None is supported as normalization mode for DCT-I. Note also that the
    DCT-I is only supported for input size > 1

    **Type II**

    There are several definitions of the DCT-II; we use the following
    (for ``norm=None``)::


                N-1
      y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
                n=0

    If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f`::

      f = sqrt(1/(4*N)) if k = 0,
      f = sqrt(1/(2*N)) otherwise.

    Which makes the corresponding matrix of coefficients orthonormal
    (``OO' = Id``).

    **Type III**

    There are several definitions, we use the following
    (for ``norm=None``)::

                        N-1
      y[k] = x[0] + 2 * sum x[n]*cos(pi*(k+0.5)*n/N), 0 <= k < N.
                        n=1

    or, for ``norm='ortho'`` and 0 <= k < N::

                                          N-1
      y[k] = x[0] / sqrt(N) + sqrt(2/N) * sum x[n]*cos(pi*(k+0.5)*n/N)
                                          n=1

    The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
    to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
    the orthonormalized DCT-II.

    References
    ----------
    .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
           Makhoul, `IEEE Transactions on acoustics, speech and signal
           processing` vol. 28(1), pp. 27-34,
           http://dx.doi.org/10.1109/TASSP.1980.1163351 (1980).
    .. [2] Wikipedia, "Discrete cosine transform",
           http://en.wikipedia.org/wiki/Discrete_cosine_transform

    Examples
    --------
    The Type 1 DCT is equivalent to the FFT (though faster) for real,
    even-symmetrical inputs.  The output is also real and even-symmetrical.
    Half of the FFT input is used to generate half of the FFT output:

    >>> from scipy.fftpack import fft, dct
    >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
    array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])
    >>> dct(np.array([4., 3., 5., 10.]), 1)
    array([ 30.,  -8.,   6.,  -2.])

    """
    if type == 1 and norm is not None:
        raise NotImplementedError(
              "Orthonormalization not yet supported for DCT-I")
    return _dct(x, type, n, axis, normalize=norm, overwrite_x=overwrite_x)


def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3}, optional
        Type of the DCT (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the idct is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    idct : ndarray of real
        The transformed input array.

    See Also
    --------
    dct : Forward DCT

    Notes
    -----
    For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
    MATLAB ``idct(x)``.

    'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.

    IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
    3, and IDCT of type 3 is the DCT of type 2. For the definition of these
    types, see `dct`.

    Examples
    --------
    The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
    inputs.  The output is also real and even-symmetrical.  Half of the IFFT
    input is used to generate half of the IFFT output:

    >>> from scipy.fftpack import ifft, idct
    >>> ifft(np.array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])).real
    array([  4.,   3.,   5.,  10.,   5.,   3.])
    >>> idct(np.array([ 30.,  -8.,   6.,  -2.]), 1) / 6
    array([  4.,   3.,   5.,  10.])

    """
    if type == 1 and norm is not None:
        raise NotImplementedError(
              "Orthonormalization not yet supported for IDCT-I")
    # Inverse/forward type table
    _TP = {1:1, 2:3, 3:2}
    return _dct(x, _TP[type], n, axis, normalize=norm, overwrite_x=overwrite_x)


def _get_dct_fun(type, dtype):
    try:
        name = {'float64':'ddct%d', 'float32':'dct%d'}[dtype.name]
    except KeyError:
        raise ValueError("dtype %s not supported" % dtype)
    try:
        f = getattr(_fftpack, name % type)
    except AttributeError as e:
        raise ValueError(str(e) + ". Type %d not understood" % type)
    return f


def _get_norm_mode(normalize):
    try:
        nm = {None:0, 'ortho':1}[normalize]
    except KeyError:
        raise ValueError("Unknown normalize mode %s" % normalize)
    return nm


def __fix_shape(x, n, axis, dct_or_dst):
    tmp = _asfarray(x)
    copy_made = _datacopied(tmp, x)
    if n is None:
        n = tmp.shape[axis]
    elif n != tmp.shape[axis]:
        tmp, copy_made2 = _fix_shape(tmp, n, axis)
        copy_made = copy_made or copy_made2
    if n < 1:
        raise ValueError("Invalid number of %s data points "
                         "(%d) specified." % (dct_or_dst, n))
    return tmp, n, copy_made


def _raw_dct(x0, type, n, axis, nm, overwrite_x):
    f = _get_dct_fun(type, x0.dtype)
    return _eval_fun(f, x0, n, axis, nm, overwrite_x)


def _raw_dst(x0, type, n, axis, nm, overwrite_x):
    f = _get_dst_fun(type, x0.dtype)
    return _eval_fun(f, x0, n, axis, nm, overwrite_x)


def _eval_fun(f, tmp, n, axis, nm, overwrite_x):
    if axis == -1 or axis == len(tmp.shape) - 1:
        return f(tmp, n, nm, overwrite_x)

    tmp = np.swapaxes(tmp, axis, -1)
    tmp = f(tmp, n, nm, overwrite_x)
    return np.swapaxes(tmp, axis, -1)


def _dct(x, type, n=None, axis=-1, overwrite_x=False, normalize=None):
    """
    Return Discrete Cosine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        input array.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dct is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    z : ndarray

    """
    x0, n, copy_made = __fix_shape(x, n, axis, 'DCT')
    if type == 1 and n < 2:
        raise ValueError("DCT-I is not defined for size < 2")
    overwrite_x = overwrite_x or copy_made
    nm = _get_norm_mode(normalize)
    if np.iscomplexobj(x0):
        return (_raw_dct(x0.real, type, n, axis, nm, overwrite_x) + 1j *
                _raw_dct(x0.imag, type, n, axis, nm, overwrite_x))
    else:
        return _raw_dct(x0, type, n, axis, nm, overwrite_x)


def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Discrete Sine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    dst : ndarray of reals
        The transformed input array.

    See Also
    --------
    idst : Inverse DST

    Notes
    -----
    For a single dimension array ``x``.

    There are theoretically 8 types of the DST for different combinations of
    even/odd boundary conditions and boundary off sets [1]_, only the first
    3 types are implemented in scipy.

    **Type I**

    There are several definitions of the DST-I; we use the following
    for ``norm=None``.  DST-I assumes the input is odd around n=-1 and n=N. ::

                 N-1
      y[k] = 2 * sum x[n]*sin(pi*(k+1)*(n+1)/(N+1))
                 n=0

    Only None is supported as normalization mode for DCT-I. Note also that the
    DCT-I is only supported for input size > 1
    The (unnormalized) DCT-I is its own inverse, up to a factor `2(N+1)`.

    **Type II**

    There are several definitions of the DST-II; we use the following
    for ``norm=None``.  DST-II assumes the input is odd around n=-1/2 and
    n=N-1/2; the output is odd around k=-1 and even around k=N-1 ::

                N-1
      y[k] = 2* sum x[n]*sin(pi*(k+1)*(n+0.5)/N), 0 <= k < N.
                n=0

    if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f` ::

        f = sqrt(1/(4*N)) if k == 0
        f = sqrt(1/(2*N)) otherwise.

    **Type III**

    There are several definitions of the DST-III, we use the following
    (for ``norm=None``).  DST-III assumes the input is odd around n=-1
    and even around n=N-1 ::

                                 N-2
      y[k] = x[N-1]*(-1)**k + 2* sum x[n]*sin(pi*(k+0.5)*(n+1)/N), 0 <= k < N.
                                 n=0

    The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
    to a factor `2N`.  The orthonormalized DST-III is exactly the inverse of
    the orthonormalized DST-II.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] Wikipedia, "Discrete sine transform",
           http://en.wikipedia.org/wiki/Discrete_sine_transform

    """
    if type == 1 and norm is not None:
        raise NotImplementedError(
              "Orthonormalization not yet supported for IDCT-I")
    return _dst(x, type, n, axis, normalize=norm, overwrite_x=overwrite_x)


def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the idst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    idst : ndarray of real
        The transformed input array.

    See Also
    --------
    dst : Forward DST

    Notes
    -----
    'The' IDST is the IDST of type 2, which is the same as DST of type 3.

    IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
    3, and IDST of type 3 is the DST of type 2. For the definition of these
    types, see `dst`.

    .. versionadded:: 0.11.0

    """
    if type == 1 and norm is not None:
        raise NotImplementedError(
              "Orthonormalization not yet supported for IDCT-I")
    # Inverse/forward type table
    _TP = {1:1, 2:3, 3:2}
    return _dst(x, _TP[type], n, axis, normalize=norm, overwrite_x=overwrite_x)


def _get_dst_fun(type, dtype):
    try:
        name = {'float64':'ddst%d', 'float32':'dst%d'}[dtype.name]
    except KeyError:
        raise ValueError("dtype %s not supported" % dtype)
    try:
        f = getattr(_fftpack, name % type)
    except AttributeError as e:
        raise ValueError(str(e) + ". Type %d not understood" % type)
    return f


def _dst(x, type, n=None, axis=-1, overwrite_x=False, normalize=None):
    """
    Return Discrete Sine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        input array.
    n : int, optional
        Length of the transform.
    axis : int, optional
        Axis along which the dst is computed. (default=-1)
    overwrite_x : bool, optional
        If True the contents of x can be destroyed. (default=False)

    Returns
    -------
    z : real ndarray

    """
    x0, n, copy_made = __fix_shape(x, n, axis, 'DST')
    if type == 1 and n < 2:
        raise ValueError("DST-I is not defined for size < 2")
    overwrite_x = overwrite_x or copy_made
    nm = _get_norm_mode(normalize)
    if np.iscomplexobj(x0):
        return (_raw_dst(x0.real, type, n, axis, nm, overwrite_x) + 1j *
                _raw_dst(x0.imag, type, n, axis, nm, overwrite_x))
    else:
        return _raw_dst(x0, type, n, axis, nm, overwrite_x)