1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
from os.path import join, dirname
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_equal, TestCase
from scipy.fftpack.realtransforms import dct, idct, dst, idst
# Matlab reference data
MDATA = np.load(join(dirname(__file__), 'test.npz'))
X = [MDATA['x%d' % i] for i in range(8)]
Y = [MDATA['y%d' % i] for i in range(8)]
# FFTW reference data: the data are organized as follows:
# * SIZES is an array containing all available sizes
# * for every type (1, 2, 3, 4) and every size, the array dct_type_size
# contains the output of the DCT applied to the input np.linspace(0, size-1,
# size)
FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
def fftw_dct_ref(type, size, dt):
x = np.linspace(0, size-1, size).astype(dt)
dt = np.result_type(np.float32, dt)
if dt == np.double:
data = FFTWDATA_DOUBLE
elif dt == np.float32:
data = FFTWDATA_SINGLE
else:
raise ValueError()
y = (data['dct_%d_%d' % (type, size)]).astype(dt)
return x, y, dt
def fftw_dst_ref(type, size, dt):
x = np.linspace(0, size-1, size).astype(dt)
dt = np.result_type(np.float32, dt)
if dt == np.double:
data = FFTWDATA_DOUBLE
elif dt == np.float32:
data = FFTWDATA_SINGLE
else:
raise ValueError()
y = (data['dst_%d_%d' % (type, size)]).astype(dt)
return x, y, dt
class TestComplex(TestCase):
def test_dct_complex64(self):
y = dct(1j*np.arange(5, dtype=np.complex64))
x = 1j*dct(np.arange(5))
assert_array_almost_equal(x, y)
def test_dct_complex(self):
y = dct(np.arange(5)*1j)
x = 1j*dct(np.arange(5))
assert_array_almost_equal(x, y)
def test_idct_complex(self):
y = idct(np.arange(5)*1j)
x = 1j*idct(np.arange(5))
assert_array_almost_equal(x, y)
def test_dst_complex64(self):
y = dst(np.arange(5, dtype=np.complex64)*1j)
x = 1j*dst(np.arange(5))
assert_array_almost_equal(x, y)
def test_dst_complex(self):
y = dst(np.arange(5)*1j)
x = 1j*dst(np.arange(5))
assert_array_almost_equal(x, y)
def test_idst_complex(self):
y = idst(np.arange(5)*1j)
x = 1j*idst(np.arange(5))
assert_array_almost_equal(x, y)
class _TestDCTBase(TestCase):
def setUp(self):
self.rdt = None
self.dec = 14
self.type = None
def test_definition(self):
for i in FFTWDATA_SIZES:
x, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
y = dct(x, type=self.type)
assert_equal(y.dtype, dt)
# XXX: we divide by np.max(y) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
err_msg="Size %d failed" % i)
def test_axis(self):
nt = 2
for i in [7, 8, 9, 16, 32, 64]:
x = np.random.randn(nt, i)
y = dct(x, type=self.type)
for j in range(nt):
assert_array_almost_equal(y[j], dct(x[j], type=self.type),
decimal=self.dec)
x = x.T
y = dct(x, axis=0, type=self.type)
for j in range(nt):
assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
decimal=self.dec)
class _TestDCTIIBase(_TestDCTBase):
def test_definition_matlab(self):
# Test correspondance with matlab (orthornomal mode).
for i in range(len(X)):
dt = np.result_type(np.float32, self.rdt)
x = np.array(X[i], dtype=dt)
yr = Y[i]
y = dct(x, norm="ortho", type=2)
assert_equal(y.dtype, dt)
assert_array_almost_equal(y, yr, decimal=self.dec)
class _TestDCTIIIBase(_TestDCTBase):
def test_definition_ortho(self):
# Test orthornomal mode.
for i in range(len(X)):
x = np.array(X[i], dtype=self.rdt)
dt = np.result_type(np.float32, self.rdt)
y = dct(x, norm='ortho', type=2)
xi = dct(y, norm="ortho", type=3)
assert_equal(xi.dtype, dt)
assert_array_almost_equal(xi, x, decimal=self.dec)
class TestDCTIDouble(_TestDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 1
class TestDCTIFloat(_TestDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 1
class TestDCTIInt(_TestDCTBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 1
class TestDCTIIDouble(_TestDCTIIBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 2
class TestDCTIIFloat(_TestDCTIIBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 2
class TestDCTIIInt(_TestDCTIIBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 2
class TestDCTIIIDouble(_TestDCTIIIBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestDCTIIIFloat(_TestDCTIIIBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 3
class TestDCTIIIInt(_TestDCTIIIBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 3
class _TestIDCTBase(TestCase):
def setUp(self):
self.rdt = None
self.dec = 14
self.type = None
def test_definition(self):
for i in FFTWDATA_SIZES:
xr, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
x = idct(yr, type=self.type)
if self.type == 1:
x /= 2 * (i-1)
else:
x /= 2 * i
assert_equal(x.dtype, dt)
# XXX: we divide by np.max(y) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
err_msg="Size %d failed" % i)
class TestIDCTIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 1
class TestIDCTIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 4
self.type = 1
class TestIDCTIInt(_TestIDCTBase):
def setUp(self):
self.rdt = int
self.dec = 4
self.type = 1
class TestIDCTIIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 10
self.type = 2
class TestIDCTIIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 2
class TestIDCTIIInt(_TestIDCTBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 2
class TestIDCTIIIDouble(_TestIDCTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestIDCTIIIFloat(_TestIDCTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 3
class TestIDCTIIIInt(_TestIDCTBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 3
class _TestDSTBase(TestCase):
def setUp(self):
self.rdt = None # dtype
self.dec = None # number of decimals to match
self.type = None # dst type
def test_definition(self):
for i in FFTWDATA_SIZES:
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
y = dst(xr, type=self.type)
assert_equal(y.dtype, dt)
# XXX: we divide by np.max(y) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
err_msg="Size %d failed" % i)
class TestDSTIDouble(_TestDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 1
class TestDSTIFloat(_TestDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 5
self.type = 1
class TestDSTIInt(_TestDSTBase):
def setUp(self):
self.rdt = int
self.dec = 5
self.type = 1
class TestDSTIIDouble(_TestDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 2
class TestDSTIIFloat(_TestDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 6
self.type = 2
class TestDSTIIInt(_TestDSTBase):
def setUp(self):
self.rdt = int
self.dec = 6
self.type = 2
class TestDSTIIIDouble(_TestDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestDSTIIIFloat(_TestDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 7
self.type = 3
class TestDSTIIIInt(_TestDSTBase):
def setUp(self):
self.rdt = int
self.dec = 7
self.type = 3
class _TestIDSTBase(TestCase):
def setUp(self):
self.rdt = None
self.dec = None
self.type = None
def test_definition(self):
for i in FFTWDATA_SIZES:
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
x = idst(yr, type=self.type)
if self.type == 1:
x /= 2 * (i+1)
else:
x /= 2 * i
assert_equal(x.dtype, dt)
# XXX: we divide by np.max(x) because the tests fail otherwise. We
# should really use something like assert_array_approx_equal. The
# difference is due to fftw using a better algorithm w.r.t error
# propagation compared to the ones from fftpack.
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
err_msg="Size %d failed" % i)
class TestIDSTIDouble(_TestIDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 12
self.type = 1
class TestIDSTIFloat(_TestIDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 4
self.type = 1
class TestIDSTIInt(_TestIDSTBase):
def setUp(self):
self.rdt = int
self.dec = 4
self.type = 1
class TestIDSTIIDouble(_TestIDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 2
class TestIDSTIIFloat(_TestIDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 6
self.type = 2
class TestIDSTIIInt(_TestIDSTBase):
def setUp(self):
self.rdt = int
self.dec = 6
self.type = 2
class TestIDSTIIIDouble(_TestIDSTBase):
def setUp(self):
self.rdt = np.double
self.dec = 14
self.type = 3
class TestIDSTIIIFloat(_TestIDSTBase):
def setUp(self):
self.rdt = np.float32
self.dec = 6
self.type = 3
class TestIDSTIIIInt(_TestIDSTBase):
def setUp(self):
self.rdt = int
self.dec = 6
self.type = 3
class TestOverwrite(object):
"""Check input overwrite behavior """
real_dtypes = [np.float32, np.float64]
def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x,
should_overwrite, **kw):
x2 = x.copy()
routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)
sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % (
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
if not should_overwrite:
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes):
np.random.seed(1234)
if np.issubdtype(dtype, np.complexfloating):
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
else:
data = np.random.randn(*shape)
data = data.astype(dtype)
for type in [1, 2, 3]:
for overwrite_x in [True, False]:
for norm in [None, 'ortho']:
if type == 1 and norm == 'ortho':
continue
should_overwrite = (overwrite_x
and dtype in overwritable_dtypes
and (len(shape) == 1 or
(axis % len(shape) == len(shape)-1
)))
self._check(data, routine, type, None, axis, norm,
overwrite_x, should_overwrite)
def test_dct(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(dct, dtype, (16,), -1, overwritable)
self._check_1d(dct, dtype, (16, 2), 0, overwritable)
self._check_1d(dct, dtype, (2, 16), 1, overwritable)
def test_idct(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(idct, dtype, (16,), -1, overwritable)
self._check_1d(idct, dtype, (16, 2), 0, overwritable)
self._check_1d(idct, dtype, (2, 16), 1, overwritable)
def test_dst(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(dst, dtype, (16,), -1, overwritable)
self._check_1d(dst, dtype, (16, 2), 0, overwritable)
self._check_1d(dst, dtype, (2, 16), 1, overwritable)
def test_idst(self):
overwritable = self.real_dtypes
for dtype in self.real_dtypes:
self._check_1d(idst, dtype, (16,), -1, overwritable)
self._check_1d(idst, dtype, (16, 2), 0, overwritable)
self._check_1d(idst, dtype, (2, 16), 1, overwritable)
if __name__ == "__main__":
np.testing.run_module_suite()
|