1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
/* MULTIPACK module by Travis Oliphant
Copyright (c) 2002 Travis Oliphant all rights reserved
oliphant.travis@ieee.org
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
*/
/* This extension module is a collection of wrapper functions around
common FORTRAN code in the package ODEPACK.
The wrappers are meant to be nearly direct translations between the
FORTAN code and Python. Some parameters like sizes do not need to be
passed since they are available from the objects.
It is anticipated that a pure Python module be written to call these lower
level routines and make a simpler user interface. All of the routines define
default values for little-used parameters so that even the raw routines are
quite useful without a separate wrapper.
FORTRAN Outputs that are not either an error indicator or the sought-after
results are placed in a dictionary and returned as an optional member of
the result tuple when the full_output argument is non-zero.
*/
#include "Python.h"
#include "numpy/npy_3kcompat.h"
#include "numpy/arrayobject.h"
#define PYERR(errobj,message) {\
PyErr_SetString(errobj,message); \
goto fail; \
}
#define PYERR2(errobj,message) { \
PyErr_Print(); \
PyErr_SetString(errobj, message); \
goto fail; \
}
typedef struct _odepack_globals {
PyObject *python_function;
PyObject *python_jacobian;
PyObject *extra_arguments; /* a tuple */
int jac_transpose;
int jac_type;
} odepack_params;
static odepack_params global_params = {NULL, NULL, NULL, 0, 0};
static
PyObject *call_python_function(PyObject *func, npy_intp n, double *x,
PyObject *args, PyObject *error_obj)
{
/*
This is a generic function to call a python function that takes a 1-D
sequence as a first argument and optional extra_arguments (should be a
zero-length tuple if none desired). The result of the function is
returned in a multiarray object.
-- build sequence object from values in x.
-- add extra arguments (if any) to an argument list.
-- call Python callable object
-- check if error occurred:
if so return NULL
-- if no error, place result of Python code into multiarray object.
*/
PyArrayObject *sequence = NULL;
PyObject *arglist = NULL;
PyObject *arg1 = NULL;
PyObject *result = NULL;
PyArrayObject *result_array = NULL;
/* Build sequence argument from inputs */
sequence = (PyArrayObject *) PyArray_SimpleNewFromData(1, &n, NPY_DOUBLE,
(char *) x);
if (sequence == NULL) {
goto fail;
}
/* Build argument list */
if ((arg1 = PyTuple_New(1)) == NULL) {
Py_DECREF(sequence);
return NULL;
}
PyTuple_SET_ITEM(arg1, 0, (PyObject *)sequence);
/* arg1 now owns sequence reference */
if ((arglist = PySequence_Concat(arg1, args)) == NULL) {
goto fail;
}
Py_DECREF(arg1); /* arglist has a reference to sequence, now. */
arg1 = NULL;
/*
* Call function object --- variable passed to routine. Extra
* arguments are in another passed variable.
*/
if ((result = PyEval_CallObject(func, arglist))==NULL) {
goto fail;
}
result_array = (PyArrayObject *) PyArray_ContiguousFromObject(result,
NPY_DOUBLE, 0, 0);
if (result_array == NULL) {
goto fail;
}
Py_DECREF(result);
Py_DECREF(arglist);
return (PyObject *) result_array;
fail:
Py_XDECREF(arglist);
Py_XDECREF(result);
Py_XDECREF(arg1);
return NULL;
}
static PyObject *odepack_error;
#if defined(UPPERCASE_FORTRAN)
#if defined(NO_APPEND_FORTRAN)
/* nothing to do here */
#else
#define LSODA LSODA_
#endif
#else
#if defined(NO_APPEND_FORTRAN)
#define LSODA lsoda
#else
#define LSODA lsoda_
#endif
#endif
void LSODA();
/*
void ode_function(int *n, double *t, double *y, double *ydot)
{
ydot[0] = -0.04*y[0] + 1e4*y[1]*y[2];
ydot[2] = 3e7*y[1]*y[1];
ydot[1] = -ydot[0] - ydot[2];
return;
}
*/
void
ode_function(int *n, double *t, double *y, double *ydot)
{
/*
This is the function called from the Fortran code it should
-- use call_python_function to get a multiarrayobject result
-- check for errors and set *n to -1 if any
-- otherwise place result of calculation in ydot
*/
PyArrayObject *result_array = NULL;
PyObject *arg1, *arglist;
/* Append t to argument list */
if ((arg1 = PyTuple_New(1)) == NULL) {
*n = -1;
return;
}
PyTuple_SET_ITEM(arg1, 0, PyFloat_FromDouble(*t));
/* arg1 now owns newly created reference */
if ((arglist = PySequence_Concat(arg1, global_params.extra_arguments)) == NULL) {
*n = -1;
Py_DECREF(arg1);
return;
}
Py_DECREF(arg1); /* arglist has reference */
result_array = (PyArrayObject *)call_python_function(global_params.python_function,
*n, y, arglist, odepack_error);
if (result_array == NULL) {
*n = -1;
Py_DECREF(arglist);
return;
}
if (PyArray_NDIM(result_array) > 1) {
*n = -1;
PyErr_Format(PyExc_RuntimeError,
"The array return by func must be one-dimensional, but got ndim=%d.",
PyArray_NDIM(result_array));
Py_DECREF(arglist);
Py_DECREF(result_array);
return;
}
if (PyArray_Size((PyObject *)result_array) != *n) {
PyErr_Format(PyExc_RuntimeError,
"The size of the array returned by func (%ld) does not match "
"the size of y0 (%d).",
PyArray_Size((PyObject *)result_array), *n);
*n = -1;
Py_DECREF(arglist);
Py_DECREF(result_array);
return;
}
memcpy(ydot, PyArray_DATA(result_array), (*n)*sizeof(double));
Py_DECREF(result_array);
Py_DECREF(arglist);
return;
}
/*
* Copy a contiguous matrix at `c` to a Fortran-ordered matrix at `f`.
* `ldf` is the leading dimension of the Fortran array at `f`.
* `nrows` and `ncols` are the number of rows and columns of the matrix, resp.
* If `transposed` is 0, c[i, j] is *(c + ncols*i + j).
* If `transposed` is nonzero, c[i, j] is *(c + i + nrows*j) (i.e. `c` is
* stored in F-contiguous order).
*/
static void
copy_array_to_fortran(double *f, int ldf, int nrows, int ncols,
double *c, int transposed)
{
int i, j;
int row_stride, col_stride;
/* The strides count multiples of sizeof(double), not bytes. */
if (transposed) {
row_stride = 1;
col_stride = nrows;
}
else {
row_stride = ncols;
col_stride = 1;
}
for (i = 0; i < nrows; ++i) {
for (j = 0; j < ncols; ++j) {
double value;
/* value = c[i,j] */
value = *(c + row_stride*i + col_stride*j);
/* f[i,j] = value */
*(f + ldf*j + i) = value;
}
}
}
int
ode_jacobian_function(int *n, double *t, double *y, int *ml, int *mu,
double *pd, int *nrowpd)
{
/*
This is the function called from the Fortran code it should
-- use call_python_function to get a multiarrayobject result
-- check for errors and return -1 if any (though this is ignored
by calling program).
-- otherwise place result of calculation in pd
*/
PyArrayObject *result_array;
PyObject *arglist, *arg1;
int ndim, nrows, ncols, dim_error;
npy_intp *dims;
/* Append t to argument list */
if ((arg1 = PyTuple_New(1)) == NULL) {
*n = -1;
return -1;
}
PyTuple_SET_ITEM(arg1, 0, PyFloat_FromDouble(*t));
/* arg1 now owns newly created reference */
if ((arglist = PySequence_Concat(arg1, global_params.extra_arguments)) == NULL) {
*n = -1;
Py_DECREF(arg1);
return -1;
}
Py_DECREF(arg1); /* arglist has reference */
result_array = (PyArrayObject *)call_python_function(global_params.python_jacobian,
*n, y, arglist, odepack_error);
if (result_array == NULL) {
*n = -1;
Py_DECREF(arglist);
return -1;
}
ncols = *n;
if (global_params.jac_type == 4) {
nrows = *ml + *mu + 1;
}
else {
nrows = *n;
}
if (!global_params.jac_transpose) {
int tmp;
tmp = nrows;
nrows = ncols;
ncols = tmp;
}
ndim = PyArray_NDIM(result_array);
if (ndim > 2) {
PyErr_Format(PyExc_RuntimeError,
"The Jacobian array must be two dimensional, but got ndim=%d.",
ndim);
*n = -1;
Py_DECREF(arglist);
Py_DECREF(result_array);
return -1;
}
dims = PyArray_DIMS(result_array);
dim_error = 0;
if (ndim == 0) {
if ((nrows != 1) || (ncols != 1)) {
dim_error = 1;
}
}
if (ndim == 1) {
if ((nrows != 1) || (dims[0] != ncols)) {
dim_error = 1;
}
}
if (ndim == 2) {
if ((dims[0] != nrows) || (dims[1] != ncols)) {
dim_error = 1;
}
}
if (dim_error) {
char *b = "";
if (global_params.jac_type == 4) {
b = "banded ";
}
PyErr_Format(PyExc_RuntimeError,
"Expected a %sJacobian array with shape (%d, %d)",
b, nrows, ncols);
*n = -1;
Py_DECREF(arglist);
Py_DECREF(result_array);
return -1;
}
/*
* global_params.jac_type is either 1 (full Jacobian) or 4 (banded Jacobian).
* global_params.jac_transpose is !col_deriv, so if global_params.jac_transpose
* is 0, the array created by the user is already in Fortran order, and
* a transpose is not needed when it is copied to pd.
*/
if ((global_params.jac_type == 1) && !global_params.jac_transpose) {
/* Full Jacobian, no transpose needed, so we can use memcpy. */
memcpy(pd, PyArray_DATA(result_array), (*n)*(*nrowpd)*sizeof(double));
}
else {
/*
* global_params.jac_type == 4 (banded Jacobian), or
* global_params.jac_type == 1 and global_params.jac_transpose == 1.
*
* We can't use memcpy when global_params.jac_type is 4 because the leading
* dimension of pd doesn't necessarily equal the number of rows of the
* matrix.
*/
int m; /* Number of rows in the (full or packed banded) Jacobian. */
if (global_params.jac_type == 4) {
m = *ml + *mu + 1;
}
else {
m = *n;
}
copy_array_to_fortran(pd, *nrowpd, m, *n,
(double *) PyArray_DATA(result_array),
!global_params.jac_transpose);
}
Py_DECREF(arglist);
Py_DECREF(result_array);
return 0;
}
int
setup_extra_inputs(PyArrayObject **ap_rtol, PyObject *o_rtol,
PyArrayObject **ap_atol, PyObject *o_atol,
PyArrayObject **ap_tcrit, PyObject *o_tcrit,
int *numcrit, int neq)
{
int itol = 0;
double tol = 1.49012e-8;
npy_intp one = 1;
/* Setup tolerances */
if (o_rtol == NULL) {
*ap_rtol = (PyArrayObject *) PyArray_SimpleNew(1, &one, NPY_DOUBLE);
if (*ap_rtol == NULL) {
PYERR2(odepack_error,"Error constructing relative tolerance.");
}
*(double *) PyArray_DATA(*ap_rtol) = tol; /* Default */
}
else {
*ap_rtol = (PyArrayObject *) PyArray_ContiguousFromObject(o_rtol,
NPY_DOUBLE, 0, 1);
if (*ap_rtol == NULL) {
PYERR2(odepack_error,"Error converting relative tolerance.");
}
/* XXX Fix the following. */
if (PyArray_NDIM(*ap_rtol) == 0); /* rtol is scalar */
else if (PyArray_DIMS(*ap_rtol)[0] == neq) {
itol |= 2; /* Set rtol array flag */
}
else {
PYERR(odepack_error, "Tolerances must be an array of the same length as the\n number of equations or a scalar.");
}
}
if (o_atol == NULL) {
*ap_atol = (PyArrayObject *) PyArray_SimpleNew(1, &one, NPY_DOUBLE);
if (*ap_atol == NULL) {
PYERR2(odepack_error,"Error constructing absolute tolerance");
}
*(double *)PyArray_DATA(*ap_atol) = tol;
}
else {
*ap_atol = (PyArrayObject *) PyArray_ContiguousFromObject(o_atol, NPY_DOUBLE, 0, 1);
if (*ap_atol == NULL) {
PYERR2(odepack_error,"Error converting absolute tolerance.");
}
/* XXX Fix the following. */
if (PyArray_NDIM(*ap_atol) == 0); /* atol is scalar */
else if (PyArray_DIMS(*ap_atol)[0] == neq) {
itol |= 1; /* Set atol array flag */
}
else {
PYERR(odepack_error,"Tolerances must be an array of the same length as the\n number of equations or a scalar.");
}
}
itol++; /* increment to get correct value */
/* Setup t-critical */
if (o_tcrit != NULL) {
*ap_tcrit = (PyArrayObject *) PyArray_ContiguousFromObject(o_tcrit, NPY_DOUBLE, 0, 1);
if (*ap_tcrit == NULL) {
PYERR2(odepack_error,"Error constructing critical times.");
}
*numcrit = PyArray_Size((PyObject *) (*ap_tcrit));
}
return itol;
fail: /* Needed for use of PYERR */
return -1;
}
int
compute_lrw_liw(int *lrw, int *liw, int neq, int jt, int ml, int mu,
int mxordn, int mxords)
{
int lrn, lrs, nyh, lmat;
if (jt == 1 || jt == 2) {
lmat = neq*neq + 2;
}
else if (jt == 4 || jt == 5) {
lmat = (2*ml + mu + 1)*neq + 2;
}
else {
PYERR(odepack_error,"Incorrect value for jt");
}
if (mxordn < 0) {
PYERR(odepack_error,"Incorrect value for mxordn");
}
if (mxords < 0) {
PYERR(odepack_error,"Incorrect value for mxords");
}
nyh = neq;
lrn = 20 + nyh*(mxordn+1) + 3*neq;
lrs = 20 + nyh*(mxords+1) + 3*neq + lmat;
*lrw = PyArray_MAX(lrn,lrs);
*liw = 20 + neq;
return 0;
fail:
return -1;
}
static char doc_odeint[] =
"[y,{infodict,}istate] = odeint(fun, y0, t, args=(), Dfun=None, "
"col_deriv=0, ml=, mu=, full_output=0, rtol=, atol=, tcrit=, h0=0.0, "
"hmax=0.0, hmin=0.0, ixpr=0.0, mxstep=0.0, mxhnil=0, mxordn=0, "
"mxords=0)\n yprime = fun(y,t,...)";
static PyObject *
odepack_odeint(PyObject *dummy, PyObject *args, PyObject *kwdict)
{
PyObject *fcn, *y0, *p_tout, *o_rtol = NULL, *o_atol = NULL;
PyArrayObject *ap_y = NULL, *ap_yout = NULL;
PyArrayObject *ap_rtol = NULL, *ap_atol = NULL;
PyArrayObject *ap_tout = NULL;
PyObject *extra_args = NULL;
PyObject *Dfun = Py_None;
int neq, itol = 1, itask = 1, istate = 1, iopt = 0, lrw, *iwork, liw, jt = 4;
double *y, t, *tout, *rtol, *atol, *rwork;
double h0 = 0.0, hmax = 0.0, hmin = 0.0;
int ixpr = 0, mxstep = 0, mxhnil = 0, mxordn = 12, mxords = 5, ml = -1, mu = -1;
PyObject *o_tcrit = NULL;
PyArrayObject *ap_tcrit = NULL;
PyArrayObject *ap_hu = NULL, *ap_tcur = NULL, *ap_tolsf = NULL, *ap_tsw = NULL;
PyArrayObject *ap_nst = NULL, *ap_nfe = NULL, *ap_nje = NULL, *ap_nqu = NULL;
PyArrayObject *ap_mused = NULL;
int imxer = 0, lenrw = 0, leniw = 0, col_deriv = 0;
npy_intp out_sz = 0, dims[2];
int k, ntimes, crit_ind = 0;
int allocated = 0, full_output = 0, numcrit = 0;
double *yout, *yout_ptr, *tout_ptr, *tcrit;
double *wa;
static char *kwlist[] = {"fun", "y0", "t", "args", "Dfun", "col_deriv",
"ml", "mu", "full_output", "rtol", "atol", "tcrit",
"h0", "hmax", "hmin", "ixpr", "mxstep", "mxhnil",
"mxordn", "mxords", NULL};
odepack_params save_params;
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "OOO|OOiiiiOOOdddiiiii", kwlist,
&fcn, &y0, &p_tout, &extra_args, &Dfun,
&col_deriv, &ml, &mu, &full_output, &o_rtol, &o_atol,
&o_tcrit, &h0, &hmax, &hmin, &ixpr, &mxstep, &mxhnil,
&mxordn, &mxords)) {
return NULL;
}
if (o_tcrit == Py_None) {
o_tcrit = NULL;
}
if (o_rtol == Py_None) {
o_rtol = NULL;
}
if (o_atol == Py_None) {
o_atol = NULL;
}
/* Set up jt, ml, and mu */
if (Dfun == Py_None) {
/* set jt for internally generated */
jt++;
}
if (ml < 0 && mu < 0) {
/* neither ml nor mu given, mark jt for full jacobian */
jt -= 3;
}
if (ml < 0) {
/* if one but not both are given */
ml = 0;
}
if (mu < 0) {
mu = 0;
}
/* Stash the current global_params in save_params. */
memcpy(&save_params, &global_params, sizeof(save_params));
if (extra_args == NULL) {
if ((extra_args = PyTuple_New(0)) == NULL) {
goto fail;
}
}
else {
Py_INCREF(extra_args); /* We decrement on exit. */
}
if (!PyTuple_Check(extra_args)) {
PYERR(odepack_error, "Extra arguments must be in a tuple");
}
if (!PyCallable_Check(fcn) || (Dfun != Py_None && !PyCallable_Check(Dfun))) {
PYERR(odepack_error, "The function and its Jacobian must be callable functions.");
}
/* Set global_params from the function arguments. */
global_params.python_function = fcn;
global_params.extra_arguments = extra_args;
global_params.python_jacobian = Dfun;
global_params.jac_transpose = !(col_deriv);
global_params.jac_type = jt;
/* Initial input vector */
ap_y = (PyArrayObject *) PyArray_ContiguousFromObject(y0, NPY_DOUBLE, 0, 0);
if (ap_y == NULL) {
goto fail;
}
if (PyArray_NDIM(ap_y) > 1) {
PyErr_SetString(PyExc_ValueError, "Initial condition y0 must be one-dimensional.");
goto fail;
}
y = (double *) PyArray_DATA(ap_y);
neq = PyArray_Size((PyObject *) ap_y);
dims[1] = neq;
/* Set of output times for integration */
ap_tout = (PyArrayObject *) PyArray_ContiguousFromObject(p_tout, NPY_DOUBLE, 0, 0);
if (ap_tout == NULL) {
goto fail;
}
if (PyArray_NDIM(ap_tout) > 1) {
PyErr_SetString(PyExc_ValueError, "Output times t must be one-dimensional.");
goto fail;
}
tout = (double *) PyArray_DATA(ap_tout);
ntimes = PyArray_Size((PyObject *)ap_tout);
dims[0] = ntimes;
t = tout[0];
/* Setup array to hold the output evaluations*/
ap_yout= (PyArrayObject *) PyArray_SimpleNew(2,dims,NPY_DOUBLE);
if (ap_yout== NULL) {
goto fail;
}
yout = (double *) PyArray_DATA(ap_yout);
/* Copy initial vector into first row of output */
memcpy(yout, y, neq*sizeof(double)); /* copy initial value to output */
yout_ptr = yout + neq; /* set output pointer to next position */
itol = setup_extra_inputs(&ap_rtol, o_rtol, &ap_atol, o_atol, &ap_tcrit,
o_tcrit, &numcrit, neq);
if (itol < 0 ) {
goto fail; /* Something didn't work */
}
rtol = (double *) PyArray_DATA(ap_rtol);
atol = (double *) PyArray_DATA(ap_atol);
if (o_tcrit != NULL) {
tcrit = (double *)(PyArray_DATA(ap_tcrit));
}
/* Find size of working arrays*/
if (compute_lrw_liw(&lrw, &liw, neq, jt, ml, mu, mxordn, mxords) < 0) {
goto fail;
}
if ((wa = (double *)malloc(lrw*sizeof(double) + liw*sizeof(int)))==NULL) {
PyErr_NoMemory();
goto fail;
}
allocated = 1;
rwork = wa;
iwork = (int *)(wa + lrw);
iwork[0] = ml;
iwork[1] = mu;
if (h0 != 0.0 || hmax != 0.0 || hmin != 0.0 || ixpr != 0 || mxstep != 0 ||
mxhnil != 0 || mxordn != 0 || mxords != 0) {
rwork[4] = h0;
rwork[5] = hmax;
rwork[6] = hmin;
iwork[4] = ixpr;
iwork[5] = mxstep;
iwork[6] = mxhnil;
iwork[7] = mxordn;
iwork[8] = mxords;
iopt = 1;
}
istate = 1;
k = 1;
/* If full output make some useful output arrays */
if (full_output) {
out_sz = ntimes-1;
ap_hu = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_DOUBLE);
ap_tcur = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_DOUBLE);
ap_tolsf = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_DOUBLE);
ap_tsw = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_DOUBLE);
ap_nst = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_INT);
ap_nfe = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_INT);
ap_nje = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_INT);
ap_nqu = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_INT);
ap_mused = (PyArrayObject *) PyArray_SimpleNew(1, &out_sz, NPY_INT);
if (ap_hu == NULL || ap_tcur == NULL || ap_tolsf == NULL ||
ap_tsw == NULL || ap_nst == NULL || ap_nfe == NULL ||
ap_nje == NULL || ap_nqu == NULL || ap_mused == NULL) {
goto fail;
}
}
if (o_tcrit != NULL) {
/* There are critical points */
itask = 4;
rwork[0] = *tcrit;
}
while (k < ntimes && istate > 0) { /* loop over desired times */
tout_ptr = tout + k;
/* Use tcrit if relevant */
if (itask == 4 && *tout_ptr > *(tcrit + crit_ind)) {
crit_ind++;
rwork[0] = *(tcrit+crit_ind);
}
if (crit_ind >= numcrit) {
itask = 1; /* No more critical values */
}
LSODA(ode_function, &neq, y, &t, tout_ptr, &itol, rtol, atol, &itask,
&istate, &iopt, rwork, &lrw, iwork, &liw,
ode_jacobian_function, &jt);
if (full_output) {
*((double *)PyArray_DATA(ap_hu) + (k-1)) = rwork[10];
*((double *)PyArray_DATA(ap_tcur) + (k-1)) = rwork[12];
*((double *)PyArray_DATA(ap_tolsf) + (k-1)) = rwork[13];
*((double *)PyArray_DATA(ap_tsw) + (k-1)) = rwork[14];
*((int *)PyArray_DATA(ap_nst) + (k-1)) = iwork[10];
*((int *)PyArray_DATA(ap_nfe) + (k-1)) = iwork[11];
*((int *)PyArray_DATA(ap_nje) + (k-1)) = iwork[12];
*((int *)PyArray_DATA(ap_nqu) + (k-1)) = iwork[13];
if (istate == -5 || istate == -4) {
imxer = iwork[15];
}
else {
imxer = -1;
}
lenrw = iwork[16];
leniw = iwork[17];
*((int *)PyArray_DATA(ap_mused) + (k-1)) = iwork[18];
}
if (PyErr_Occurred()) {
goto fail;
}
memcpy(yout_ptr, y, neq*sizeof(double)); /* copy integration result to output*/
yout_ptr += neq;
k++;
}
/* Restore global_params from the previously stashed save_params. */
memcpy(&global_params, &save_params, sizeof(save_params));
Py_DECREF(extra_args);
Py_DECREF(ap_atol);
Py_DECREF(ap_rtol);
Py_XDECREF(ap_tcrit);
Py_DECREF(ap_y);
Py_DECREF(ap_tout);
free(wa);
/* Do Full output */
if (full_output) {
return Py_BuildValue("N{s:N,s:N,s:N,s:N,s:N,s:N,s:N,s:N,s:i,s:i,s:i,s:N}i",
PyArray_Return(ap_yout),
"hu", PyArray_Return(ap_hu),
"tcur", PyArray_Return(ap_tcur),
"tolsf", PyArray_Return(ap_tolsf),
"tsw", PyArray_Return(ap_tsw),
"nst", PyArray_Return(ap_nst),
"nfe", PyArray_Return(ap_nfe),
"nje", PyArray_Return(ap_nje),
"nqu", PyArray_Return(ap_nqu),
"imxer", imxer,
"lenrw", lenrw,
"leniw", leniw,
"mused", PyArray_Return(ap_mused),
istate);
}
else {
return Py_BuildValue("Ni", PyArray_Return(ap_yout), istate);
}
fail:
/* Restore global_params from the previously stashed save_params. */
memcpy(&global_params, &save_params, sizeof(save_params));
Py_XDECREF(extra_args);
Py_XDECREF(ap_y);
Py_XDECREF(ap_rtol);
Py_XDECREF(ap_atol);
Py_XDECREF(ap_tcrit);
Py_XDECREF(ap_tout);
Py_XDECREF(ap_yout);
if (allocated) {
free(wa);
}
if (full_output) {
Py_XDECREF(ap_hu);
Py_XDECREF(ap_tcur);
Py_XDECREF(ap_tolsf);
Py_XDECREF(ap_tsw);
Py_XDECREF(ap_nst);
Py_XDECREF(ap_nfe);
Py_XDECREF(ap_nje);
Py_XDECREF(ap_nqu);
Py_XDECREF(ap_mused);
}
return NULL;
}
static struct PyMethodDef odepack_module_methods[] = {
{"odeint", (PyCFunction) odepack_odeint, METH_VARARGS|METH_KEYWORDS, doc_odeint},
{NULL, NULL, 0, NULL}
};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"_odepack",
NULL,
-1,
odepack_module_methods,
NULL,
NULL,
NULL,
NULL
};
PyObject *
PyInit__odepack(void)
{
PyObject *m, *d, *s;
m = PyModule_Create(&moduledef);
import_array();
d = PyModule_GetDict(m);
s = PyUString_FromString(" 1.9 ");
PyDict_SetItemString(d, "__version__", s);
odepack_error = PyErr_NewException ("odepack.error", NULL, NULL);
Py_DECREF(s);
PyDict_SetItemString(d, "error", odepack_error);
if (PyErr_Occurred()) {
Py_FatalError("can't initialize module odepack");
}
return m;
}
#else
PyMODINIT_FUNC init_odepack(void)
{
PyObject *m, *d, *s;
m = Py_InitModule("_odepack", odepack_module_methods);
import_array();
d = PyModule_GetDict(m);
s = PyUString_FromString(" 1.9 ");
PyDict_SetItemString(d, "__version__", s);
odepack_error = PyErr_NewException ("odepack.error", NULL, NULL);
Py_DECREF(s);
if (PyErr_Occurred()) {
Py_FatalError("can't initialize module odepack");
}
}
#endif
|