File: intdy.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (84 lines) | stat: -rw-r--r-- 3,166 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
      subroutine intdy (t, k, yh, nyh, dky, iflag)
clll. optimize
      integer k, nyh, iflag
      integer iownd, iowns,
     1   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     2   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
      integer i, ic, j, jb, jb2, jj, jj1, jp1
      double precision t, yh, dky
      double precision rowns,
     1   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
      double precision c, r, s, tp
      dimension yh(nyh,1), dky(1)
      common /ls0001/ rowns(209),
     2   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
     3   iownd(14), iowns(6),
     4   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     5   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
c-----------------------------------------------------------------------
c intdy computes interpolated values of the k-th derivative of the
c dependent variable vector y, and stores it in dky.  this routine
c is called within the package with k = 0 and t = tout, but may
c also be called by the user for any k up to the current order.
c (see detailed instructions in the usage documentation.)
c-----------------------------------------------------------------------
c the computed values in dky are gotten by interpolation using the
c nordsieck history array yh.  this array corresponds uniquely to a
c vector-valued polynomial of degree nqcur or less, and dky is set
c to the k-th derivative of this polynomial at t.
c the formula for dky is..
c              q
c  dky(i)  =  sum  c(j,k) * (t - tn)**(j-k) * h**(-j) * yh(i,j+1)
c             j=k
c where  c(j,k) = j*(j-1)*...*(j-k+1), q = nqcur, tn = tcur, h = hcur.
c the quantities  nq = nqcur, l = nq+1, n = neq, tn, and h are
c communicated by common.  the above sum is done in reverse order.
c iflag is returned negative if either k or t is out of bounds.
c-----------------------------------------------------------------------
      iflag = 0
      if (k .lt. 0 .or. k .gt. nq) go to 80
      tp = tn - hu -  100.0d0*uround*(tn + hu)
      if ((t-tp)*(t-tn) .gt. 0.0d0) go to 90
c
      s = (t - tn)/h
      ic = 1
      if (k .eq. 0) go to 15
      jj1 = l - k
      do 10 jj = jj1,nq
 10     ic = ic*jj
 15   c = dfloat(ic)
      do 20 i = 1,n
 20     dky(i) = c*yh(i,l)
      if (k .eq. nq) go to 55
      jb2 = nq - k
      do 50 jb = 1,jb2
        j = nq - jb
        jp1 = j + 1
        ic = 1
        if (k .eq. 0) go to 35
        jj1 = jp1 - k
        do 30 jj = jj1,j
 30       ic = ic*jj
 35     c = dfloat(ic)
        do 40 i = 1,n
 40       dky(i) = c*yh(i,jp1) + s*dky(i)
 50     continue
      if (k .eq. 0) return
 55   r = h**(-k)
      do 60 i = 1,n
 60     dky(i) = r*dky(i)
      return
c
 80   call xerrwv('intdy--  k (=i1) illegal      ',
     1   30, 51, 0, 1, k, 0, 0, 0.0d0, 0.0d0)
      iflag = -1
      return
 90   call xerrwv('intdy--  t (=r1) illegal      ',
     1   30, 52, 0, 0, 0, 0, 1, t, 0.0d0)
      call xerrwv(
     1  '     t not in interval tcur - hu (= r1) to tcur (=r2)       ',
     1   60, 52, 0, 0, 0, 0, 2, tp, tn)
      iflag = -2
      return
c----------------------- end of subroutine intdy -----------------------
      end