1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
subroutine prja (neq, y, yh, nyh, ewt, ftem, savf, wm, iwm,
1 f, jac)
clll. optimize
external f, jac
integer neq, nyh, iwm
integer iownd, iowns,
1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
integer iownd2, iowns2, jtyp, mused, mxordn, mxords, isav
integer i, i1, i2, ier, ii, j, j1, jj, lenp,
1 mba, mband, meb1, meband, ml, ml3, mu, np1
double precision y, yh, ewt, ftem, savf, wm, rsav
double precision rowns,
1 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
double precision rownd2, rowns2, pdnorm
double precision con, fac, hl0, r, r0, srur, yi, yj, yjj,
1 vmnorm, fnorm, bnorm
dimension neq(1), y(1), yh(nyh,*), ewt(1), ftem(1), savf(1),
1 wm(*), iwm(*), rsav(240), isav(50)
common /ls0001/ rowns(209),
2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
3 iownd(14), iowns(6),
4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
common /lsa001/ rownd2, rowns2(20), pdnorm,
1 iownd2(3), iowns2(2), jtyp, mused, mxordn, mxords
c-----------------------------------------------------------------------
c prja is called by stoda to compute and process the matrix
c p = i - h*el(1)*j , where j is an approximation to the jacobian.
c here j is computed by the user-supplied routine jac if
c miter = 1 or 4 or by finite differencing if miter = 2 or 5.
c j, scaled by -h*el(1), is stored in wm. then the norm of j (the
c matrix norm consistent with the weighted max-norm on vectors given
c by vmnorm) is computed, and j is overwritten by p. p is then
c subjected to lu decomposition in preparation for later solution
c of linear systems with p as coefficient matrix. this is done
c by dgetrf if miter = 1 or 2, and by dgbtrf if miter = 4 or 5.
c
c in addition to variables described previously, communication
c with prja uses the following..
c y = array containing predicted values on entry.
c ftem = work array of length n (acor in stoda).
c savf = array containing f evaluated at predicted y.
c wm = real work space for matrices. on output it contains the
c lu decomposition of p.
c storage of matrix elements starts at wm(3).
c wm also contains the following matrix-related data..
c wm(1) = sqrt(uround), used in numerical jacobian increments.
c iwm = integer work space containing pivot information, starting at
c iwm(21). iwm also contains the band parameters
c ml = iwm(1) and mu = iwm(2) if miter is 4 or 5.
c el0 = el(1) (input).
c pdnorm= norm of jacobian matrix. (output).
c ierpj = output error flag, = 0 if no trouble, .gt. 0 if
c p matrix found to be singular.
c jcur = output flag = 1 to indicate that the jacobian matrix
c (or approximation) is now current.
c this routine also uses the common variables el0, h, tn, uround,
c miter, n, nfe, and nje.
c-----------------------------------------------------------------------
nje = nje + 1
ierpj = 0
jcur = 1
hl0 = h*el0
go to (100, 200, 300, 400, 500), miter
c if miter = 1, call jac and multiply by scalar. -----------------------
100 lenp = n*n
do 110 i = 1,lenp
110 wm(i+2) = 0.0d0
call srcma (rsav, isav, 1)
call jac (neq, tn, y, 0, 0, wm(3), n)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
con = -hl0
do 120 i = 1,lenp
120 wm(i+2) = wm(i+2)*con
go to 240
c if miter = 2, make n calls to f to approximate j. --------------------
200 fac = vmnorm (n, savf, ewt)
r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
if (r0 .eq. 0.0d0) r0 = 1.0d0
srur = wm(1)
j1 = 2
do 230 j = 1,n
yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call srcma (rsav, isav, 1)
call f (neq, tn, y, ftem)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
do 220 i = 1,n
220 wm(i+j1) = (ftem(i) - savf(i))*fac
y(j) = yj
j1 = j1 + n
230 continue
nfe = nfe + n
240 continue
c compute norm of jacobian. --------------------------------------------
pdnorm = fnorm (n, wm(3), ewt)/dabs(hl0)
c add identity matrix. -------------------------------------------------
np1 = n + 1
j = 3
do 250 i = 1,n
wm(j) = wm(j) + 1.0d0
250 j = j + np1
c do lu decomposition on p. --------------------------------------------
c Replaced LINPACK dgefa with LAPACK dgetrf
c call dgefa (wm(3), n, n, iwm(21), ier)
call dgetrf (n, n, wm(3), n, iwm(21), ier)
if (ier .ne. 0) ierpj = 1
return
c dummy block only, since miter is never 3 in this routine. ------------
300 return
c if miter = 4, call jac and multiply by scalar. -----------------------
400 ml = iwm(1)
mu = iwm(2)
ml3 = ml + 3
mband = ml + mu + 1
meband = mband + ml
lenp = meband*n
do 410 i = 1,lenp
410 wm(i+2) = 0.0d0
call srcma (rsav, isav, 1)
call jac (neq, tn, y, ml, mu, wm(ml3), meband)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
con = -hl0
do 420 i = 1,lenp
420 wm(i+2) = wm(i+2)*con
go to 570
c if miter = 5, make mband calls to f to approximate j. ----------------
500 ml = iwm(1)
mu = iwm(2)
mband = ml + mu + 1
mba = min0(mband,n)
meband = mband + ml
meb1 = meband - 1
srur = wm(1)
fac = vmnorm (n, savf, ewt)
r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
if (r0 .eq. 0.0d0) r0 = 1.0d0
do 560 j = 1,mba
do 530 i = j,n,mband
yi = y(i)
r = dmax1(srur*dabs(yi),r0/ewt(i))
530 y(i) = y(i) + r
call srcma (rsav, isav, 1)
call f (neq, tn, y, ftem)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
do 550 jj = j,n,mband
y(jj) = yh(jj,1)
yjj = y(jj)
r = dmax1(srur*dabs(yjj),r0/ewt(jj))
fac = -hl0/r
i1 = max0(jj-mu,1)
i2 = min0(jj+ml,n)
ii = jj*meb1 - ml + 2
do 540 i = i1,i2
540 wm(ii+i) = (ftem(i) - savf(i))*fac
550 continue
560 continue
nfe = nfe + mba
570 continue
c compute norm of jacobian. --------------------------------------------
pdnorm = bnorm (n, wm(3), meband, ml, mu, ewt)/dabs(hl0)
c add identity matrix. -------------------------------------------------
ii = mband + 2
do 580 i = 1,n
wm(ii) = wm(ii) + 1.0d0
580 ii = ii + meband
c do lu decomposition of p. --------------------------------------------
c Replaced LINPACK dgefa with LAPACK dgetrf
c call dgbfa (wm(3), meband, n, ml, mu, iwm(21), ier)
call dgbtrf (n, n, ml, mu, wm(3), meband, iwm(21), ier)
if (ier .ne. 0) ierpj = 1
return
c----------------------- end of subroutine prja ------------------------
end
|