1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
subroutine stoda (neq, y, yh, nyh, yh1, ewt, savf, acor,
1 wm, iwm, f, jac, pjac, slvs)
clll. optimize
external f, jac, pjac, slvs
integer neq, nyh, iwm
integer iownd, ialth, ipup, lmax, meo, nqnyh, nslp,
1 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
2 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
integer iownd2, icount, irflag, jtyp, mused, mxordn, mxords
integer i, i1, iredo, iret, j, jb, m, ncf, newq
integer lm1, lm1p1, lm2, lm2p1, nqm1, nqm2, isav
double precision y, yh, yh1, ewt, savf, acor, wm, rsav
double precision conit, crate, el, elco, hold, rmax, tesco,
2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
double precision rownd2, pdest, pdlast, ratio, cm1, cm2,
1 pdnorm
double precision dcon, ddn, del, delp, dsm, dup, exdn, exsm, exup,
1 r, rh, rhdn, rhsm, rhup, told, vmnorm
double precision alpha, dm1, dm2, exm1, exm2, pdh, pnorm, rate,
1 rh1, rh1it, rh2, rm, sm1
dimension neq(1), y(1), yh(nyh,*), yh1(1), ewt(1), savf(1),
1 acor(1), wm(*), iwm(*), rsav(240), isav(50)
dimension sm1(12)
common /ls0001/ conit, crate, el(13), elco(13,12),
1 hold, rmax, tesco(3,12),
2 ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround, iownd(14),
3 ialth, ipup, lmax, meo, nqnyh, nslp,
4 icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
5 maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
common /lsa001/ rownd2, pdest, pdlast, ratio, cm1(12), cm2(5),
1 pdnorm,
2 iownd2(3), icount, irflag, jtyp, mused, mxordn, mxords
data sm1/0.5d0, 0.575d0, 0.55d0, 0.45d0, 0.35d0, 0.25d0,
1 0.20d0, 0.15d0, 0.10d0, 0.075d0, 0.050d0, 0.025d0/
c-----------------------------------------------------------------------
c stoda performs one step of the integration of an initial value
c problem for a system of ordinary differential equations.
c note.. stoda is independent of the value of the iteration method
c indicator miter, when this is .ne. 0, and hence is independent
c of the type of chord method used, or the jacobian structure.
c communication with stoda is done with the following variables..
c
c y = an array of length .ge. n used as the y argument in
c all calls to f and jac.
c neq = integer array containing problem size in neq(1), and
c passed as the neq argument in all calls to f and jac.
c yh = an nyh by lmax array containing the dependent variables
c and their approximate scaled derivatives, where
c lmax = maxord + 1. yh(i,j+1) contains the approximate
c j-th derivative of y(i), scaled by h**j/factorial(j)
c (j = 0,1,...,nq). on entry for the first step, the first
c two columns of yh must be set from the initial values.
c nyh = a constant integer .ge. n, the first dimension of yh.
c yh1 = a one-dimensional array occupying the same space as yh.
c ewt = an array of length n containing multiplicative weights
c for local error measurements. local errors in y(i) are
c compared to 1.0/ewt(i) in various error tests.
c savf = an array of working storage, of length n.
c acor = a work array of length n, used for the accumulated
c corrections. on a successful return, acor(i) contains
c the estimated one-step local error in y(i).
c wm,iwm = real and integer work arrays associated with matrix
c operations in chord iteration (miter .ne. 0).
c pjac = name of routine to evaluate and preprocess jacobian matrix
c and p = i - h*el0*jac, if a chord method is being used.
c it also returns an estimate of norm(jac) in pdnorm.
c slvs = name of routine to solve linear system in chord iteration.
c ccmax = maximum relative change in h*el0 before pjac is called.
c h = the step size to be attempted on the next step.
c h is altered by the error control algorithm during the
c problem. h can be either positive or negative, but its
c sign must remain constant throughout the problem.
c hmin = the minimum absolute value of the step size h to be used.
c hmxi = inverse of the maximum absolute value of h to be used.
c hmxi = 0.0 is allowed and corresponds to an infinite hmax.
c hmin and hmxi may be changed at any time, but will not
c take effect until the next change of h is considered.
c tn = the independent variable. tn is updated on each step taken.
c jstart = an integer used for input only, with the following
c values and meanings..
c 0 perform the first step.
c .gt.0 take a new step continuing from the last.
c -1 take the next step with a new value of h,
c n, meth, miter, and/or matrix parameters.
c -2 take the next step with a new value of h,
c but with other inputs unchanged.
c on return, jstart is set to 1 to facilitate continuation.
c kflag = a completion code with the following meanings..
c 0 the step was succesful.
c -1 the requested error could not be achieved.
c -2 corrector convergence could not be achieved.
c -3 fatal error in pjac or slvs.
c a return with kflag = -1 or -2 means either
c abs(h) = hmin or 10 consecutive failures occurred.
c on a return with kflag negative, the values of tn and
c the yh array are as of the beginning of the last
c step, and h is the last step size attempted.
c maxord = the maximum order of integration method to be allowed.
c maxcor = the maximum number of corrector iterations allowed.
c msbp = maximum number of steps between pjac calls (miter .gt. 0).
c mxncf = maximum number of convergence failures allowed.
c meth = current method.
c meth = 1 means adams method (nonstiff)
c meth = 2 means bdf method (stiff)
c meth may be reset by stoda.
c miter = corrector iteration method.
c miter = 0 means functional iteration.
c miter = jt .gt. 0 means a chord iteration corresponding
c to jacobian type jt. (the lsoda argument jt is
c communicated here as jtyp, but is not used in stoda
c except to load miter following a method switch.)
c miter may be reset by stoda.
c n = the number of first-order differential equations.
c-----------------------------------------------------------------------
kflag = 0
told = tn
ncf = 0
ierpj = 0
iersl = 0
jcur = 0
icf = 0
delp = 0.0d0
if (jstart .gt. 0) go to 200
if (jstart .eq. -1) go to 100
if (jstart .eq. -2) go to 160
c-----------------------------------------------------------------------
c on the first call, the order is set to 1, and other variables are
c initialized. rmax is the maximum ratio by which h can be increased
c in a single step. it is initially 1.e4 to compensate for the small
c initial h, but then is normally equal to 10. if a failure
c occurs (in corrector convergence or error test), rmax is set at 2
c for the next increase.
c cfode is called to get the needed coefficients for both methods.
c-----------------------------------------------------------------------
lmax = maxord + 1
nq = 1
l = 2
ialth = 2
rmax = 10000.0d0
rc = 0.0d0
el0 = 1.0d0
crate = 0.7d0
hold = h
nslp = 0
ipup = miter
iret = 3
c initialize switching parameters. meth = 1 is assumed initially. -----
icount = 20
irflag = 0
pdest = 0.0d0
pdlast = 0.0d0
ratio = 5.0d0
call cfode (2, elco, tesco)
do 10 i = 1,5
10 cm2(i) = tesco(2,i)*elco(i+1,i)
call cfode (1, elco, tesco)
do 20 i = 1,12
20 cm1(i) = tesco(2,i)*elco(i+1,i)
go to 150
c-----------------------------------------------------------------------
c the following block handles preliminaries needed when jstart = -1.
c ipup is set to miter to force a matrix update.
c if an order increase is about to be considered (ialth = 1),
c ialth is reset to 2 to postpone consideration one more step.
c if the caller has changed meth, cfode is called to reset
c the coefficients of the method.
c if h is to be changed, yh must be rescaled.
c if h or meth is being changed, ialth is reset to l = nq + 1
c to prevent further changes in h for that many steps.
c-----------------------------------------------------------------------
100 ipup = miter
lmax = maxord + 1
if (ialth .eq. 1) ialth = 2
if (meth .eq. mused) go to 160
call cfode (meth, elco, tesco)
ialth = l
iret = 1
c-----------------------------------------------------------------------
c the el vector and related constants are reset
c whenever the order nq is changed, or at the start of the problem.
c-----------------------------------------------------------------------
150 do 155 i = 1,l
155 el(i) = elco(i,nq)
nqnyh = nq*nyh
rc = rc*el(1)/el0
el0 = el(1)
conit = 0.5d0/dfloat(nq+2)
go to (160, 170, 200), iret
c-----------------------------------------------------------------------
c if h is being changed, the h ratio rh is checked against
c rmax, hmin, and hmxi, and the yh array rescaled. ialth is set to
c l = nq + 1 to prevent a change of h for that many steps, unless
c forced by a convergence or error test failure.
c-----------------------------------------------------------------------
160 if (h .eq. hold) go to 200
rh = h/hold
h = hold
iredo = 3
go to 175
170 rh = dmax1(rh,hmin/dabs(h))
175 rh = dmin1(rh,rmax)
rh = rh/dmax1(1.0d0,dabs(h)*hmxi*rh)
c-----------------------------------------------------------------------
c if meth = 1, also restrict the new step size by the stability region.
c if this reduces h, set irflag to 1 so that if there are roundoff
c problems later, we can assume that is the cause of the trouble.
c-----------------------------------------------------------------------
if (meth .eq. 2) go to 178
irflag = 0
pdh = dmax1(dabs(h)*pdlast,0.000001d0)
if (rh*pdh*1.00001d0 .lt. sm1(nq)) go to 178
rh = sm1(nq)/pdh
irflag = 1
178 continue
r = 1.0d0
do 180 j = 2,l
r = r*rh
do 180 i = 1,n
180 yh(i,j) = yh(i,j)*r
h = h*rh
rc = rc*rh
ialth = l
if (iredo .eq. 0) go to 690
c-----------------------------------------------------------------------
c this section computes the predicted values by effectively
c multiplying the yh array by the pascal triangle matrix.
c rc is the ratio of new to old values of the coefficient h*el(1).
c when rc differs from 1 by more than ccmax, ipup is set to miter
c to force pjac to be called, if a jacobian is involved.
c in any case, pjac is called at least every msbp steps.
c-----------------------------------------------------------------------
200 if (dabs(rc-1.0d0) .gt. ccmax) ipup = miter
if (nst .ge. nslp+msbp) ipup = miter
tn = tn + h
i1 = nqnyh + 1
do 215 jb = 1,nq
i1 = i1 - nyh
cdir$ ivdep
do 210 i = i1,nqnyh
210 yh1(i) = yh1(i) + yh1(i+nyh)
215 continue
pnorm = vmnorm (n, yh1, ewt)
c-----------------------------------------------------------------------
c up to maxcor corrector iterations are taken. a convergence test is
c made on the r.m.s. norm of each correction, weighted by the error
c weight vector ewt. the sum of the corrections is accumulated in the
c vector acor(i). the yh array is not altered in the corrector loop.
c-----------------------------------------------------------------------
220 m = 0
rate = 0.0d0
del = 0.0d0
do 230 i = 1,n
230 y(i) = yh(i,1)
call srcma (rsav, isav, 1)
call f (neq, tn, y, savf)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
nfe = nfe + 1
if (ipup .le. 0) go to 250
c-----------------------------------------------------------------------
c if indicated, the matrix p = i - h*el(1)*j is reevaluated and
c preprocessed before starting the corrector iteration. ipup is set
c to 0 as an indicator that this has been done.
c-----------------------------------------------------------------------
call pjac (neq, y, yh, nyh, ewt, acor, savf, wm, iwm, f, jac)
c SCIPY error check:
if (neq(1) .eq. -1) return
ipup = 0
rc = 1.0d0
nslp = nst
crate = 0.7d0
if (ierpj .ne. 0) go to 430
250 do 260 i = 1,n
260 acor(i) = 0.0d0
270 if (miter .ne. 0) go to 350
c-----------------------------------------------------------------------
c in the case of functional iteration, update y directly from
c the result of the last function evaluation.
c-----------------------------------------------------------------------
do 290 i = 1,n
savf(i) = h*savf(i) - yh(i,2)
290 y(i) = savf(i) - acor(i)
del = vmnorm (n, y, ewt)
do 300 i = 1,n
y(i) = yh(i,1) + el(1)*savf(i)
300 acor(i) = savf(i)
go to 400
c-----------------------------------------------------------------------
c in the case of the chord method, compute the corrector error,
c and solve the linear system with that as right-hand side and
c p as coefficient matrix.
c-----------------------------------------------------------------------
350 do 360 i = 1,n
360 y(i) = h*savf(i) - (yh(i,2) + acor(i))
call slvs (wm, iwm, y, savf)
if (iersl .lt. 0) go to 430
if (iersl .gt. 0) go to 410
del = vmnorm (n, y, ewt)
do 380 i = 1,n
acor(i) = acor(i) + y(i)
380 y(i) = yh(i,1) + el(1)*acor(i)
c-----------------------------------------------------------------------
c test for convergence. if m.gt.0, an estimate of the convergence
c rate constant is stored in crate, and this is used in the test.
c
c we first check for a change of iterates that is the size of
c roundoff error. if this occurs, the iteration has converged, and a
c new rate estimate is not formed.
c in all other cases, force at least two iterations to estimate a
c local lipschitz constant estimate for adams methods.
c on convergence, form pdest = local maximum lipschitz constant
c estimate. pdlast is the most recent nonzero estimate.
c-----------------------------------------------------------------------
400 continue
if (del .le. 100.0d0*pnorm*uround) go to 450
if (m .eq. 0 .and. meth .eq. 1) go to 405
if (m .eq. 0) go to 402
rm = 1024.0d0
if (del .le. 1024.0d0*delp) rm = del/delp
rate = dmax1(rate,rm)
crate = dmax1(0.2d0*crate,rm)
402 dcon = del*dmin1(1.0d0,1.5d0*crate)/(tesco(2,nq)*conit)
if (dcon .gt. 1.0d0) go to 405
pdest = dmax1(pdest,rate/dabs(h*el(1)))
if (pdest .ne. 0.0d0) pdlast = pdest
go to 450
405 continue
m = m + 1
if (m .eq. maxcor) go to 410
if (m .ge. 2 .and. del .gt. 2.0d0*delp) go to 410
delp = del
call srcma (rsav, isav, 1)
call f (neq, tn, y, savf)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
nfe = nfe + 1
go to 270
c-----------------------------------------------------------------------
c the corrector iteration failed to converge.
c if miter .ne. 0 and the jacobian is out of date, pjac is called for
c the next try. otherwise the yh array is retracted to its values
c before prediction, and h is reduced, if possible. if h cannot be
c reduced or mxncf failures have occurred, exit with kflag = -2.
c-----------------------------------------------------------------------
410 if (miter .eq. 0 .or. jcur .eq. 1) go to 430
icf = 1
ipup = miter
go to 220
430 icf = 2
ncf = ncf + 1
rmax = 2.0d0
tn = told
i1 = nqnyh + 1
do 445 jb = 1,nq
i1 = i1 - nyh
cdir$ ivdep
do 440 i = i1,nqnyh
440 yh1(i) = yh1(i) - yh1(i+nyh)
445 continue
if (ierpj .lt. 0 .or. iersl .lt. 0) go to 680
if (dabs(h) .le. hmin*1.00001d0) go to 670
if (ncf .eq. mxncf) go to 670
rh = 0.25d0
ipup = miter
iredo = 1
go to 170
c-----------------------------------------------------------------------
c the corrector has converged. jcur is set to 0
c to signal that the jacobian involved may need updating later.
c the local error test is made and control passes to statement 500
c if it fails.
c-----------------------------------------------------------------------
450 jcur = 0
if (m .eq. 0) dsm = del/tesco(2,nq)
if (m .gt. 0) dsm = vmnorm (n, acor, ewt)/tesco(2,nq)
if (dsm .gt. 1.0d0) go to 500
c-----------------------------------------------------------------------
c after a successful step, update the yh array.
c decrease icount by 1, and if it is -1, consider switching methods.
c if a method switch is made, reset various parameters,
c rescale the yh array, and exit. if there is no switch,
c consider changing h if ialth = 1. otherwise decrease ialth by 1.
c if ialth is then 1 and nq .lt. maxord, then acor is saved for
c use in a possible order increase on the next step.
c if a change in h is considered, an increase or decrease in order
c by one is considered also. a change in h is made only if it is by a
c factor of at least 1.1. if not, ialth is set to 3 to prevent
c testing for that many steps.
c-----------------------------------------------------------------------
kflag = 0
iredo = 0
nst = nst + 1
hu = h
nqu = nq
mused = meth
do 460 j = 1,l
do 460 i = 1,n
460 yh(i,j) = yh(i,j) + el(j)*acor(i)
icount = icount - 1
if (icount .ge. 0) go to 488
if (meth .eq. 2) go to 480
c-----------------------------------------------------------------------
c we are currently using an adams method. consider switching to bdf.
c if the current order is greater than 5, assume the problem is
c not stiff, and skip this section.
c if the lipschitz constant and error estimate are not polluted
c by roundoff, go to 470 and perform the usual test.
c otherwise, switch to the bdf methods if the last step was
c restricted to insure stability (irflag = 1), and stay with adams
c method if not. when switching to bdf with polluted error estimates,
c in the absence of other information, double the step size.
c
c when the estimates are ok, we make the usual test by computing
c the step size we could have (ideally) used on this step,
c with the current (adams) method, and also that for the bdf.
c if nq .gt. mxords, we consider changing to order mxords on switching.
c compare the two step sizes to decide whether to switch.
c the step size advantage must be at least ratio = 5 to switch.
c-----------------------------------------------------------------------
if (nq .gt. 5) go to 488
if (dsm .gt. 100.0d0*pnorm*uround .and. pdest .ne. 0.0d0)
1 go to 470
if (irflag .eq. 0) go to 488
rh2 = 2.0d0
nqm2 = min0(nq,mxords)
go to 478
470 continue
exsm = 1.0d0/dfloat(l)
rh1 = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
rh1it = 2.0d0*rh1
pdh = pdlast*dabs(h)
if (pdh*rh1 .gt. 0.00001d0) rh1it = sm1(nq)/pdh
rh1 = dmin1(rh1,rh1it)
if (nq .le. mxords) go to 474
nqm2 = mxords
lm2 = mxords + 1
exm2 = 1.0d0/dfloat(lm2)
lm2p1 = lm2 + 1
dm2 = vmnorm (n, yh(1,lm2p1), ewt)/cm2(mxords)
rh2 = 1.0d0/(1.2d0*dm2**exm2 + 0.0000012d0)
go to 476
474 dm2 = dsm*(cm1(nq)/cm2(nq))
rh2 = 1.0d0/(1.2d0*dm2**exsm + 0.0000012d0)
nqm2 = nq
476 continue
if (rh2 .lt. ratio*rh1) go to 488
c the switch test passed. reset relevant quantities for bdf. ----------
478 rh = rh2
icount = 20
meth = 2
miter = jtyp
pdlast = 0.0d0
nq = nqm2
l = nq + 1
go to 170
c-----------------------------------------------------------------------
c we are currently using a bdf method. consider switching to adams.
c compute the step size we could have (ideally) used on this step,
c with the current (bdf) method, and also that for the adams.
c if nq .gt. mxordn, we consider changing to order mxordn on switching.
c compare the two step sizes to decide whether to switch.
c the step size advantage must be at least 5/ratio = 1 to switch.
c if the step size for adams would be so small as to cause
c roundoff pollution, we stay with bdf.
c-----------------------------------------------------------------------
480 continue
exsm = 1.0d0/dfloat(l)
if (mxordn .ge. nq) go to 484
nqm1 = mxordn
lm1 = mxordn + 1
exm1 = 1.0d0/dfloat(lm1)
lm1p1 = lm1 + 1
dm1 = vmnorm (n, yh(1,lm1p1), ewt)/cm1(mxordn)
rh1 = 1.0d0/(1.2d0*dm1**exm1 + 0.0000012d0)
go to 486
484 dm1 = dsm*(cm2(nq)/cm1(nq))
rh1 = 1.0d0/(1.2d0*dm1**exsm + 0.0000012d0)
nqm1 = nq
exm1 = exsm
486 rh1it = 2.0d0*rh1
pdh = pdnorm*dabs(h)
if (pdh*rh1 .gt. 0.00001d0) rh1it = sm1(nqm1)/pdh
rh1 = dmin1(rh1,rh1it)
rh2 = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
if (rh1*ratio .lt. 5.0d0*rh2) go to 488
alpha = dmax1(0.001d0,rh1)
dm1 = (alpha**exm1)*dm1
if (dm1 .le. 1000.0d0*uround*pnorm) go to 488
c the switch test passed. reset relevant quantities for adams. --------
rh = rh1
icount = 20
meth = 1
miter = 0
pdlast = 0.0d0
nq = nqm1
l = nq + 1
go to 170
c
c no method switch is being made. do the usual step/order selection. --
488 continue
ialth = ialth - 1
if (ialth .eq. 0) go to 520
if (ialth .gt. 1) go to 700
if (l .eq. lmax) go to 700
do 490 i = 1,n
490 yh(i,lmax) = acor(i)
go to 700
c-----------------------------------------------------------------------
c the error test failed. kflag keeps track of multiple failures.
c restore tn and the yh array to their previous values, and prepare
c to try the step again. compute the optimum step size for this or
c one lower order. after 2 or more failures, h is forced to decrease
c by a factor of 0.2 or less.
c-----------------------------------------------------------------------
500 kflag = kflag - 1
tn = told
i1 = nqnyh + 1
do 515 jb = 1,nq
i1 = i1 - nyh
cdir$ ivdep
do 510 i = i1,nqnyh
510 yh1(i) = yh1(i) - yh1(i+nyh)
515 continue
rmax = 2.0d0
if (dabs(h) .le. hmin*1.00001d0) go to 660
if (kflag .le. -3) go to 640
iredo = 2
rhup = 0.0d0
go to 540
c-----------------------------------------------------------------------
c regardless of the success or failure of the step, factors
c rhdn, rhsm, and rhup are computed, by which h could be multiplied
c at order nq - 1, order nq, or order nq + 1, respectively.
c in the case of failure, rhup = 0.0 to avoid an order increase.
c the largest of these is determined and the new order chosen
c accordingly. if the order is to be increased, we compute one
c additional scaled derivative.
c-----------------------------------------------------------------------
520 rhup = 0.0d0
if (l .eq. lmax) go to 540
do 530 i = 1,n
530 savf(i) = acor(i) - yh(i,lmax)
dup = vmnorm (n, savf, ewt)/tesco(3,nq)
exup = 1.0d0/dfloat(l+1)
rhup = 1.0d0/(1.4d0*dup**exup + 0.0000014d0)
540 exsm = 1.0d0/dfloat(l)
rhsm = 1.0d0/(1.2d0*dsm**exsm + 0.0000012d0)
rhdn = 0.0d0
if (nq .eq. 1) go to 550
ddn = vmnorm (n, yh(1,l), ewt)/tesco(1,nq)
exdn = 1.0d0/dfloat(nq)
rhdn = 1.0d0/(1.3d0*ddn**exdn + 0.0000013d0)
c if meth = 1, limit rh according to the stability region also. --------
550 if (meth .eq. 2) go to 560
pdh = dmax1(dabs(h)*pdlast,0.000001d0)
if (l .lt. lmax) rhup = dmin1(rhup,sm1(l)/pdh)
rhsm = dmin1(rhsm,sm1(nq)/pdh)
if (nq .gt. 1) rhdn = dmin1(rhdn,sm1(nq-1)/pdh)
pdest = 0.0d0
560 if (rhsm .ge. rhup) go to 570
if (rhup .gt. rhdn) go to 590
go to 580
570 if (rhsm .lt. rhdn) go to 580
newq = nq
rh = rhsm
go to 620
580 newq = nq - 1
rh = rhdn
if (kflag .lt. 0 .and. rh .gt. 1.0d0) rh = 1.0d0
go to 620
590 newq = l
rh = rhup
if (rh .lt. 1.1d0) go to 610
r = el(l)/dfloat(l)
do 600 i = 1,n
600 yh(i,newq+1) = acor(i)*r
go to 630
610 ialth = 3
go to 700
c if meth = 1 and h is restricted by stability, bypass 10 percent test.
620 if (meth .eq. 2) go to 622
if (rh*pdh*1.00001d0 .ge. sm1(newq)) go to 625
622 if (kflag .eq. 0 .and. rh .lt. 1.1d0) go to 610
625 if (kflag .le. -2) rh = dmin1(rh,0.2d0)
c-----------------------------------------------------------------------
c if there is a change of order, reset nq, l, and the coefficients.
c in any case h is reset according to rh and the yh array is rescaled.
c then exit from 690 if the step was ok, or redo the step otherwise.
c-----------------------------------------------------------------------
if (newq .eq. nq) go to 170
630 nq = newq
l = nq + 1
iret = 2
go to 150
c-----------------------------------------------------------------------
c control reaches this section if 3 or more failures have occured.
c if 10 failures have occurred, exit with kflag = -1.
c it is assumed that the derivatives that have accumulated in the
c yh array have errors of the wrong order. hence the first
c derivative is recomputed, and the order is set to 1. then
c h is reduced by a factor of 10, and the step is retried,
c until it succeeds or h reaches hmin.
c-----------------------------------------------------------------------
640 if (kflag .eq. -10) go to 660
rh = 0.1d0
rh = dmax1(hmin/dabs(h),rh)
h = h*rh
do 645 i = 1,n
645 y(i) = yh(i,1)
call srcma (rsav, isav, 1)
call f (neq, tn, y, savf)
c SCIPY error check:
if (neq(1) .eq. -1) return
call srcma (rsav, isav, 2)
nfe = nfe + 1
do 650 i = 1,n
650 yh(i,2) = h*savf(i)
ipup = miter
ialth = 5
if (nq .eq. 1) go to 200
nq = 1
l = 2
iret = 3
go to 150
c-----------------------------------------------------------------------
c all returns are made through this section. h is saved in hold
c to allow the caller to change h on the next step.
c-----------------------------------------------------------------------
660 kflag = -1
go to 720
670 kflag = -2
go to 720
680 kflag = -3
go to 720
690 rmax = 10.0d0
700 r = 1.0d0/tesco(2,nqu)
do 710 i = 1,n
710 acor(i) = acor(i)*r
720 hold = h
jstart = 1
return
c----------------------- end of subroutine stoda -----------------------
end
|