1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
|
*DECK DVODE
SUBROUTINE DVODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF,
2 RPAR, IPAR)
EXTERNAL F, JAC
DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK, RPAR
INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW,
1 MF, IPAR
DIMENSION Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),
1 RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C DVODE.. Variable-coefficient Ordinary Differential Equation solver,
C with fixed-leading-coefficient implementation.
C This version is in double precision.
C
C DVODE solves the initial value problem for stiff or nonstiff
C systems of first order ODEs,
C dy/dt = f(t,y) , or, in component form,
C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ).
C DVODE is a package based on the EPISODE and EPISODEB packages, and
C on the ODEPACK user interface standard, with minor modifications.
C-----------------------------------------------------------------------
C Revision History (YYMMDD)
C 890615 Date Written
C 890922 Added interrupt/restart ability, minor changes throughout.
C 910228 Minor revisions in line format, prologue, etc.
C 920227 Modifications by D. Pang:
C (1) Applied subgennam to get generic intrinsic names.
C (2) Changed intrinsic names to generic in comments.
C (3) Added *DECK lines before each routine.
C 920721 Names of routines and labeled Common blocks changed, so as
C to be unique in combined single/double precision code (ACH).
C 920722 Minor revisions to prologue (ACH).
C 920831 Conversion to double precision done (ACH).
C 921106 Fixed minor bug: ETAQ,ETAQM1 in DVSTEP SAVE statement (ACH).
C 921118 Changed LUNSAV/MFLGSV to IXSAV (ACH).
C 941222 Removed MF overwrite; attached sign to H in estimated second
C derivative in DVHIN; misc. comment corrections throughout.
C 970515 Minor corrections to comments in prologue, DVJAC.
C-----------------------------------------------------------------------
C References..
C
C 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable
C Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),
C pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.
C 2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the
C Numerical Solution of Ordinary Differential Equations,"
C ACM Trans. Math. Software, 1 (1975), pp. 71-96.
C 3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package
C for the Integration of Systems of Ordinary Differential
C Equations," LLNL Report UCID-30112, Rev. 1, April 1977.
C 4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental
C Package for the Integration of Systems of Ordinary Differential
C Equations with Banded Jacobians," LLNL Report UCID-30132, April
C 1976.
C 5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE
C Solvers," in Scientific Computing, R. S. Stepleman et al., eds.,
C North-Holland, Amsterdam, 1983, pp. 55-64.
C 6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
C of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM
C Trans. Math. Software, 6 (1980), pp. 295-318.
C-----------------------------------------------------------------------
C Authors..
C
C Peter N. Brown and Alan C. Hindmarsh
C Center for Applied Scientific Computing, L-561
C Lawrence Livermore National Laboratory
C Livermore, CA 94551
C and
C George D. Byrne
C Illinois Institute of Technology
C Chicago, IL 60616
C-----------------------------------------------------------------------
C Summary of usage.
C
C Communication between the user and the DVODE package, for normal
C situations, is summarized here. This summary describes only a subset
C of the full set of options available. See the full description for
C details, including optional communication, nonstandard options,
C and instructions for special situations. See also the example
C problem (with program and output) following this summary.
C
C A. First provide a subroutine of the form..
C
C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
C DOUBLE PRECISION T, Y, YDOT, RPAR
C DIMENSION Y(NEQ), YDOT(NEQ)
C
C which supplies the vector function f by loading YDOT(i) with f(i).
C
C B. Next determine (or guess) whether or not the problem is stiff.
C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue
C whose real part is negative and large in magnitude, compared to the
C reciprocal of the t span of interest. If the problem is nonstiff,
C use a method flag MF = 10. If it is stiff, there are four standard
C choices for MF (21, 22, 24, 25), and DVODE requires the Jacobian
C matrix in some form. In these cases (MF .gt. 0), DVODE will use a
C saved copy of the Jacobian matrix. If this is undesirable because of
C storage limitations, set MF to the corresponding negative value
C (-21, -22, -24, -25). (See full description of MF below.)
C The Jacobian matrix is regarded either as full (MF = 21 or 22),
C or banded (MF = 24 or 25). In the banded case, DVODE requires two
C half-bandwidth parameters ML and MU. These are, respectively, the
C widths of the lower and upper parts of the band, excluding the main
C diagonal. Thus the band consists of the locations (i,j) with
C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1.
C
C C. If the problem is stiff, you are encouraged to supply the Jacobian
C directly (MF = 21 or 24), but if this is not feasible, DVODE will
C compute it internally by difference quotients (MF = 22 or 25).
C If you are supplying the Jacobian, provide a subroutine of the form..
C
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR)
C DOUBLE PRECISION T, Y, PD, RPAR
C DIMENSION Y(NEQ), PD(NROWPD,NEQ)
C
C which supplies df/dy by loading PD as follows..
C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
C the partial derivative of f(i) with respect to y(j). (Ignore the
C ML and MU arguments in this case.)
C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of
C PD from the top down.
C In either case, only nonzero elements need be loaded.
C
C D. Write a main program which calls subroutine DVODE once for
C each point at which answers are desired. This should also provide
C for possible use of logical unit 6 for output of error messages
C by DVODE. On the first call to DVODE, supply arguments as follows..
C F = Name of subroutine for right-hand side vector f.
C This name must be declared external in calling program.
C NEQ = Number of first order ODE-s.
C Y = Array of initial values, of length NEQ.
C T = The initial value of the independent variable.
C TOUT = First point where output is desired (.ne. T).
C ITOL = 1 or 2 according as ATOL (below) is a scalar or array.
C RTOL = Relative tolerance parameter (scalar).
C ATOL = Absolute tolerance parameter (scalar or array).
C The estimated local error in Y(i) will be controlled so as
C to be roughly less (in magnitude) than
C EWT(i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or
C EWT(i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2.
C Thus the local error test passes if, in each component,
C either the absolute error is less than ATOL (or ATOL(i)),
C or the relative error is less than RTOL.
C Use RTOL = 0.0 for pure absolute error control, and
C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error
C control. Caution.. Actual (global) errors may exceed these
C local tolerances, so choose them conservatively.
C ITASK = 1 for normal computation of output values of Y at t = TOUT.
C ISTATE = Integer flag (input and output). Set ISTATE = 1.
C IOPT = 0 to indicate no optional input used.
C RWORK = Real work array of length at least..
C 20 + 16*NEQ for MF = 10,
C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
C 22 + 11*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25.
C LRW = Declared length of RWORK (in user's DIMENSION statement).
C IWORK = Integer work array of length at least..
C 30 for MF = 10,
C 30 + NEQ for MF = 21, 22, 24, or 25.
C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower
C and upper half-bandwidths ML,MU.
C LIW = Declared length of IWORK (in user's DIMENSION statement).
C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24).
C If used, this name must be declared external in calling
C program. If not used, pass a dummy name.
C MF = Method flag. Standard values are..
C 10 for nonstiff (Adams) method, no Jacobian used.
C 21 for stiff (BDF) method, user-supplied full Jacobian.
C 22 for stiff method, internally generated full Jacobian.
C 24 for stiff method, user-supplied banded Jacobian.
C 25 for stiff method, internally generated banded Jacobian.
C RPAR,IPAR = user-defined real and integer arrays passed to F and JAC.
C Note that the main program must declare arrays Y, RWORK, IWORK,
C and possibly ATOL, RPAR, and IPAR.
C
C E. The output from the first call (or any call) is..
C Y = Array of computed values of y(t) vector.
C T = Corresponding value of independent variable (normally TOUT).
C ISTATE = 2 if DVODE was successful, negative otherwise.
C -1 means excess work done on this call. (Perhaps wrong MF.)
C -2 means excess accuracy requested. (Tolerances too small.)
C -3 means illegal input detected. (See printed message.)
C -4 means repeated error test failures. (Check all input.)
C -5 means repeated convergence failures. (Perhaps bad
C Jacobian supplied or wrong choice of MF or tolerances.)
C -6 means error weight became zero during problem. (Solution
C component i vanished, and ATOL or ATOL(i) = 0.)
C
C F. To continue the integration after a successful return, simply
C reset TOUT and call DVODE again. No other parameters need be reset.
C
C-----------------------------------------------------------------------
C EXAMPLE PROBLEM
C
C The following is a simple example problem, with the coding
C needed for its solution by DVODE. The problem is from chemical
C kinetics, and consists of the following three rate equations..
C dy1/dt = -.04*y1 + 1.e4*y2*y3
C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
C dy3/dt = 3.e7*y2**2
C on the interval from t = 0.0 to t = 4.e10, with initial conditions
C y1 = 1.0, y2 = y3 = 0. The problem is stiff.
C
C The following coding solves this problem with DVODE, using MF = 21
C and printing results at t = .4, 4., ..., 4.e10. It uses
C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because
C y2 has much smaller values.
C At the end of the run, statistical quantities of interest are
C printed. (See optional output in the full description below.)
C To generate Fortran source code, replace C in column 1 with a blank
C in the coding below.
C
C EXTERNAL FEX, JEX
C DOUBLE PRECISION ATOL, RPAR, RTOL, RWORK, T, TOUT, Y
C DIMENSION Y(3), ATOL(3), RWORK(67), IWORK(33)
C NEQ = 3
C Y(1) = 1.0D0
C Y(2) = 0.0D0
C Y(3) = 0.0D0
C T = 0.0D0
C TOUT = 0.4D0
C ITOL = 2
C RTOL = 1.D-4
C ATOL(1) = 1.D-8
C ATOL(2) = 1.D-14
C ATOL(3) = 1.D-6
C ITASK = 1
C ISTATE = 1
C IOPT = 0
C LRW = 67
C LIW = 33
C MF = 21
C DO 40 IOUT = 1,12
C CALL DVODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,
C 1 IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)
C WRITE(6,20)T,Y(1),Y(2),Y(3)
C 20 FORMAT(' At t =',D12.4,' y =',3D14.6)
C IF (ISTATE .LT. 0) GO TO 80
C 40 TOUT = TOUT*10.
C WRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19),
C 1 IWORK(20),IWORK(21),IWORK(22)
C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,
C 1 ' No. J-s =',I4,' No. LU-s =',I4/
C 2 ' No. nonlinear iterations =',I4/
C 3 ' No. nonlinear convergence failures =',I4/
C 4 ' No. error test failures =',I4/)
C STOP
C 80 WRITE(6,90)ISTATE
C 90 FORMAT(///' Error halt.. ISTATE =',I3)
C STOP
C END
C
C SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
C DOUBLE PRECISION RPAR, T, Y, YDOT
C DIMENSION Y(NEQ), YDOT(NEQ)
C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
C YDOT(3) = 3.D7*Y(2)*Y(2)
C YDOT(2) = -YDOT(1) - YDOT(3)
C RETURN
C END
C
C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
C DOUBLE PRECISION PD, RPAR, T, Y
C DIMENSION Y(NEQ), PD(NRPD,NEQ)
C PD(1,1) = -.04D0
C PD(1,2) = 1.D4*Y(3)
C PD(1,3) = 1.D4*Y(2)
C PD(2,1) = .04D0
C PD(2,3) = -PD(1,3)
C PD(3,2) = 6.D7*Y(2)
C PD(2,2) = -PD(1,2) - PD(3,2)
C RETURN
C END
C
C The following output was obtained from the above program on a
C Cray-1 computer with the CFT compiler.
C
C At t = 4.0000e-01 y = 9.851680e-01 3.386314e-05 1.479817e-02
C At t = 4.0000e+00 y = 9.055255e-01 2.240539e-05 9.445214e-02
C At t = 4.0000e+01 y = 7.158108e-01 9.184883e-06 2.841800e-01
C At t = 4.0000e+02 y = 4.505032e-01 3.222940e-06 5.494936e-01
C At t = 4.0000e+03 y = 1.832053e-01 8.942690e-07 8.167938e-01
C At t = 4.0000e+04 y = 3.898560e-02 1.621875e-07 9.610142e-01
C At t = 4.0000e+05 y = 4.935882e-03 1.984013e-08 9.950641e-01
C At t = 4.0000e+06 y = 5.166183e-04 2.067528e-09 9.994834e-01
C At t = 4.0000e+07 y = 5.201214e-05 2.080593e-10 9.999480e-01
C At t = 4.0000e+08 y = 5.213149e-06 2.085271e-11 9.999948e-01
C At t = 4.0000e+09 y = 5.183495e-07 2.073399e-12 9.999995e-01
C At t = 4.0000e+10 y = 5.450996e-08 2.180399e-13 9.999999e-01
C
C No. steps = 595 No. f-s = 832 No. J-s = 13 No. LU-s = 112
C No. nonlinear iterations = 831
C No. nonlinear convergence failures = 0
C No. error test failures = 22
C-----------------------------------------------------------------------
C Full description of user interface to DVODE.
C
C The user interface to DVODE consists of the following parts.
C
C i. The call sequence to subroutine DVODE, which is a driver
C routine for the solver. This includes descriptions of both
C the call sequence arguments and of user-supplied routines.
C Following these descriptions is
C * a description of optional input available through the
C call sequence,
C * a description of optional output (in the work arrays), and
C * instructions for interrupting and restarting a solution.
C
C ii. Descriptions of other routines in the DVODE package that may be
C (optionally) called by the user. These provide the ability to
C alter error message handling, save and restore the internal
C COMMON, and obtain specified derivatives of the solution y(t).
C
C iii. Descriptions of COMMON blocks to be declared in overlay
C or similar environments.
C
C iv. Description of two routines in the DVODE package, either of
C which the user may replace with his own version, if desired.
C these relate to the measurement of errors.
C
C-----------------------------------------------------------------------
C Part i. Call Sequence.
C
C The call sequence parameters used for input only are
C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,
C and those used for both input and output are
C Y, T, ISTATE.
C The work arrays RWORK and IWORK are also used for conditional and
C optional input and optional output. (The term output here refers
C to the return from subroutine DVODE to the user's calling program.)
C
C The legality of input parameters will be thoroughly checked on the
C initial call for the problem, but not checked thereafter unless a
C change in input parameters is flagged by ISTATE = 3 in the input.
C
C The descriptions of the call arguments are as follows.
C
C F = The name of the user-supplied subroutine defining the
C ODE system. The system must be put in the first-order
C form dy/dt = f(t,y), where f is a vector-valued function
C of the scalar t and the vector y. Subroutine F is to
C compute the function f. It is to have the form
C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
C DOUBLE PRECISION T, Y, YDOT, RPAR
C DIMENSION Y(NEQ), YDOT(NEQ)
C where NEQ, T, and Y are input, and the array YDOT = f(t,y)
C is output. Y and YDOT are arrays of length NEQ.
C (In the DIMENSION statement above, NEQ can be replaced by
C * to make Y and YDOT assumed size arrays.)
C Subroutine F should not alter Y(1),...,Y(NEQ).
C F must be declared EXTERNAL in the calling program.
C
C Subroutine F may access user-defined real and integer
C work arrays RPAR and IPAR, which are to be dimensioned
C in the main program.
C
C If quantities computed in the F routine are needed
C externally to DVODE, an extra call to F should be made
C for this purpose, for consistent and accurate results.
C If only the derivative dy/dt is needed, use DVINDY instead.
C
C NEQ = The size of the ODE system (number of first order
C ordinary differential equations). Used only for input.
C NEQ may not be increased during the problem, but
C can be decreased (with ISTATE = 3 in the input).
C
C Y = A real array for the vector of dependent variables, of
C length NEQ or more. Used for both input and output on the
C first call (ISTATE = 1), and only for output on other calls.
C On the first call, Y must contain the vector of initial
C values. In the output, Y contains the computed solution
C evaluated at T. If desired, the Y array may be used
C for other purposes between calls to the solver.
C
C This array is passed as the Y argument in all calls to
C F and JAC.
C
C T = The independent variable. In the input, T is used only on
C the first call, as the initial point of the integration.
C In the output, after each call, T is the value at which a
C computed solution Y is evaluated (usually the same as TOUT).
C On an error return, T is the farthest point reached.
C
C TOUT = The next value of t at which a computed solution is desired.
C Used only for input.
C
C When starting the problem (ISTATE = 1), TOUT may be equal
C to T for one call, then should .ne. T for the next call.
C For the initial T, an input value of TOUT .ne. T is used
C in order to determine the direction of the integration
C (i.e. the algebraic sign of the step sizes) and the rough
C scale of the problem. Integration in either direction
C (forward or backward in t) is permitted.
C
C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after
C the first call (i.e. the first call with TOUT .ne. T).
C Otherwise, TOUT is required on every call.
C
C If ITASK = 1, 3, or 4, the values of TOUT need not be
C monotone, but a value of TOUT which backs up is limited
C to the current internal t interval, whose endpoints are
C TCUR - HU and TCUR. (See optional output, below, for
C TCUR and HU.)
C
C ITOL = An indicator for the type of error control. See
C description below under ATOL. Used only for input.
C
C RTOL = A relative error tolerance parameter, either a scalar or
C an array of length NEQ. See description below under ATOL.
C Input only.
C
C ATOL = An absolute error tolerance parameter, either a scalar or
C an array of length NEQ. Input only.
C
C The input parameters ITOL, RTOL, and ATOL determine
C the error control performed by the solver. The solver will
C control the vector e = (e(i)) of estimated local errors
C in Y, according to an inequality of the form
C rms-norm of ( e(i)/EWT(i) ) .le. 1,
C where EWT(i) = RTOL(i)*abs(Y(i)) + ATOL(i),
C and the rms-norm (root-mean-square norm) here is
C rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i))
C is a vector of weights which must always be positive, and
C the values of RTOL and ATOL should all be non-negative.
C The following table gives the types (scalar/array) of
C RTOL and ATOL, and the corresponding form of EWT(i).
C
C ITOL RTOL ATOL EWT(i)
C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL
C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i)
C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL
C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i)
C
C When either of these parameters is a scalar, it need not
C be dimensioned in the user's calling program.
C
C If none of the above choices (with ITOL, RTOL, and ATOL
C fixed throughout the problem) is suitable, more general
C error controls can be obtained by substituting
C user-supplied routines for the setting of EWT and/or for
C the norm calculation. See Part iv below.
C
C If global errors are to be estimated by making a repeated
C run on the same problem with smaller tolerances, then all
C components of RTOL and ATOL (i.e. of EWT) should be scaled
C down uniformly.
C
C ITASK = An index specifying the task to be performed.
C Input only. ITASK has the following values and meanings.
C 1 means normal computation of output values of y(t) at
C t = TOUT (by overshooting and interpolating).
C 2 means take one step only and return.
C 3 means stop at the first internal mesh point at or
C beyond t = TOUT and return.
C 4 means normal computation of output values of y(t) at
C t = TOUT but without overshooting t = TCRIT.
C TCRIT must be input as RWORK(1). TCRIT may be equal to
C or beyond TOUT, but not behind it in the direction of
C integration. This option is useful if the problem
C has a singularity at or beyond t = TCRIT.
C 5 means take one step, without passing TCRIT, and return.
C TCRIT must be input as RWORK(1).
C
C Note.. If ITASK = 4 or 5 and the solver reaches TCRIT
C (within roundoff), it will return T = TCRIT (exactly) to
C indicate this (unless ITASK = 4 and TOUT comes before TCRIT,
C in which case answers at T = TOUT are returned first).
C
C ISTATE = an index used for input and output to specify the
C the state of the calculation.
C
C In the input, the values of ISTATE are as follows.
C 1 means this is the first call for the problem
C (initializations will be done). See note below.
C 2 means this is not the first call, and the calculation
C is to continue normally, with no change in any input
C parameters except possibly TOUT and ITASK.
C (If ITOL, RTOL, and/or ATOL are changed between calls
C with ISTATE = 2, the new values will be used but not
C tested for legality.)
C 3 means this is not the first call, and the
C calculation is to continue normally, but with
C a change in input parameters other than
C TOUT and ITASK. Changes are allowed in
C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU,
C and any of the optional input except H0.
C (See IWORK description for ML and MU.)
C Note.. A preliminary call with TOUT = T is not counted
C as a first call here, as no initialization or checking of
C input is done. (Such a call is sometimes useful to include
C the initial conditions in the output.)
C Thus the first call for which TOUT .ne. T requires
C ISTATE = 1 in the input.
C
C In the output, ISTATE has the following values and meanings.
C 1 means nothing was done, as TOUT was equal to T with
C ISTATE = 1 in the input.
C 2 means the integration was performed successfully.
C -1 means an excessive amount of work (more than MXSTEP
C steps) was done on this call, before completing the
C requested task, but the integration was otherwise
C successful as far as T. (MXSTEP is an optional input
C and is normally 500.) To continue, the user may
C simply reset ISTATE to a value .gt. 1 and call again.
C (The excess work step counter will be reset to 0.)
C In addition, the user may increase MXSTEP to avoid
C this error return. (See optional input below.)
C -2 means too much accuracy was requested for the precision
C of the machine being used. This was detected before
C completing the requested task, but the integration
C was successful as far as T. To continue, the tolerance
C parameters must be reset, and ISTATE must be set
C to 3. The optional output TOLSF may be used for this
C purpose. (Note.. If this condition is detected before
C taking any steps, then an illegal input return
C (ISTATE = -3) occurs instead.)
C -3 means illegal input was detected, before taking any
C integration steps. See written message for details.
C Note.. If the solver detects an infinite loop of calls
C to the solver with illegal input, it will cause
C the run to stop.
C -4 means there were repeated error test failures on
C one attempted step, before completing the requested
C task, but the integration was successful as far as T.
C The problem may have a singularity, or the input
C may be inappropriate.
C -5 means there were repeated convergence test failures on
C one attempted step, before completing the requested
C task, but the integration was successful as far as T.
C This may be caused by an inaccurate Jacobian matrix,
C if one is being used.
C -6 means EWT(i) became zero for some i during the
C integration. Pure relative error control (ATOL(i)=0.0)
C was requested on a variable which has now vanished.
C The integration was successful as far as T.
C
C Note.. Since the normal output value of ISTATE is 2,
C it does not need to be reset for normal continuation.
C Also, since a negative input value of ISTATE will be
C regarded as illegal, a negative output value requires the
C user to change it, and possibly other input, before
C calling the solver again.
C
C IOPT = An integer flag to specify whether or not any optional
C input is being used on this call. Input only.
C The optional input is listed separately below.
C IOPT = 0 means no optional input is being used.
C Default values will be used in all cases.
C IOPT = 1 means optional input is being used.
C
C RWORK = A real working array (double precision).
C The length of RWORK must be at least
C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where
C NYH = the initial value of NEQ,
C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
C smaller value is given as an optional input),
C LWM = length of work space for matrix-related data..
C LWM = 0 if MITER = 0,
C LWM = 2*NEQ**2 + 2 if MITER = 1 or 2, and MF.gt.0,
C LWM = NEQ**2 + 2 if MITER = 1 or 2, and MF.lt.0,
C LWM = NEQ + 2 if MITER = 3,
C LWM = (3*ML+2*MU+2)*NEQ + 2 if MITER = 4 or 5, and MF.gt.0,
C LWM = (2*ML+MU+1)*NEQ + 2 if MITER = 4 or 5, and MF.lt.0.
C (See the MF description for METH and MITER.)
C Thus if MAXORD has its default value and NEQ is constant,
C this length is..
C 20 + 16*NEQ for MF = 10,
C 22 + 16*NEQ + 2*NEQ**2 for MF = 11 or 12,
C 22 + 16*NEQ + NEQ**2 for MF = -11 or -12,
C 22 + 17*NEQ for MF = 13,
C 22 + 18*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15,
C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15,
C 20 + 9*NEQ for MF = 20,
C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
C 22 + 9*NEQ + NEQ**2 for MF = -21 or -22,
C 22 + 10*NEQ for MF = 23,
C 22 + 11*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25.
C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25.
C The first 20 words of RWORK are reserved for conditional
C and optional input and optional output.
C
C The following word in RWORK is a conditional input..
C RWORK(1) = TCRIT = critical value of t which the solver
C is not to overshoot. Required if ITASK is
C 4 or 5, and ignored otherwise. (See ITASK.)
C
C LRW = The length of the array RWORK, as declared by the user.
C (This will be checked by the solver.)
C
C IWORK = An integer work array. The length of IWORK must be at least
C 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
C 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25).
C The first 30 words of IWORK are reserved for conditional and
C optional input and optional output.
C
C The following 2 words in IWORK are conditional input..
C IWORK(1) = ML These are the lower and upper
C IWORK(2) = MU half-bandwidths, respectively, of the
C banded Jacobian, excluding the main diagonal.
C The band is defined by the matrix locations
C (i,j) with i-ML .le. j .le. i+MU. ML and MU
C must satisfy 0 .le. ML,MU .le. NEQ-1.
C These are required if MITER is 4 or 5, and
C ignored otherwise. ML and MU may in fact be
C the band parameters for a matrix to which
C df/dy is only approximately equal.
C
C LIW = the length of the array IWORK, as declared by the user.
C (This will be checked by the solver.)
C
C Note.. The work arrays must not be altered between calls to DVODE
C for the same problem, except possibly for the conditional and
C optional input, and except for the last 3*NEQ words of RWORK.
C The latter space is used for internal scratch space, and so is
C available for use by the user outside DVODE between calls, if
C desired (but not for use by F or JAC).
C
C JAC = The name of the user-supplied routine (MITER = 1 or 4) to
C compute the Jacobian matrix, df/dy, as a function of
C the scalar t and the vector y. It is to have the form
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD,
C RPAR, IPAR)
C DOUBLE PRECISION T, Y, PD, RPAR
C DIMENSION Y(NEQ), PD(NROWPD, NEQ)
C where NEQ, T, Y, ML, MU, and NROWPD are input and the array
C PD is to be loaded with partial derivatives (elements of the
C Jacobian matrix) in the output. PD must be given a first
C dimension of NROWPD. T and Y have the same meaning as in
C Subroutine F. (In the DIMENSION statement above, NEQ can
C be replaced by * to make Y and PD assumed size arrays.)
C In the full matrix case (MITER = 1), ML and MU are
C ignored, and the Jacobian is to be loaded into PD in
C columnwise manner, with df(i)/dy(j) loaded into PD(i,j).
C In the band matrix case (MITER = 4), the elements
C within the band are to be loaded into PD in columnwise
C manner, with diagonal lines of df/dy loaded into the rows
C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j).
C ML and MU are the half-bandwidth parameters. (See IWORK).
C The locations in PD in the two triangular areas which
C correspond to nonexistent matrix elements can be ignored
C or loaded arbitrarily, as they are overwritten by DVODE.
C JAC need not provide df/dy exactly. A crude
C approximation (possibly with a smaller bandwidth) will do.
C In either case, PD is preset to zero by the solver,
C so that only the nonzero elements need be loaded by JAC.
C Each call to JAC is preceded by a call to F with the same
C arguments NEQ, T, and Y. Thus to gain some efficiency,
C intermediate quantities shared by both calculations may be
C saved in a user COMMON block by F and not recomputed by JAC,
C if desired. Also, JAC may alter the Y array, if desired.
C JAC must be declared external in the calling program.
C Subroutine JAC may access user-defined real and integer
C work arrays, RPAR and IPAR, whose dimensions are set by the
C user in the main program.
C
C MF = The method flag. Used only for input. The legal values of
C MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
C -11, -12, -14, -15, -21, -22, -24, -25.
C MF is a signed two-digit integer, MF = JSV*(10*METH + MITER).
C JSV = SIGN(MF) indicates the Jacobian-saving strategy..
C JSV = 1 means a copy of the Jacobian is saved for reuse
C in the corrector iteration algorithm.
C JSV = -1 means a copy of the Jacobian is not saved
C (valid only for MITER = 1, 2, 4, or 5).
C METH indicates the basic linear multistep method..
C METH = 1 means the implicit Adams method.
C METH = 2 means the method based on backward
C differentiation formulas (BDF-s).
C MITER indicates the corrector iteration method..
C MITER = 0 means functional iteration (no Jacobian matrix
C is involved).
C MITER = 1 means chord iteration with a user-supplied
C full (NEQ by NEQ) Jacobian.
C MITER = 2 means chord iteration with an internally
C generated (difference quotient) full Jacobian
C (using NEQ extra calls to F per df/dy value).
C MITER = 3 means chord iteration with an internally
C generated diagonal Jacobian approximation
C (using 1 extra call to F per df/dy evaluation).
C MITER = 4 means chord iteration with a user-supplied
C banded Jacobian.
C MITER = 5 means chord iteration with an internally
C generated banded Jacobian (using ML+MU+1 extra
C calls to F per df/dy evaluation).
C If MITER = 1 or 4, the user must supply a subroutine JAC
C (the name is arbitrary) as described above under JAC.
C For other values of MITER, a dummy argument can be used.
C
C RPAR User-specified array used to communicate real parameters
C to user-supplied subroutines. If RPAR is a vector, then
C it must be dimensioned in the user's main program. If it
C is unused or it is a scalar, then it need not be
C dimensioned.
C
C IPAR User-specified array used to communicate integer parameter
C to user-supplied subroutines. The comments on dimensioning
C RPAR apply to IPAR.
C-----------------------------------------------------------------------
C Optional Input.
C
C The following is a list of the optional input provided for in the
C call sequence. (See also Part ii.) For each such input variable,
C this table lists its name as used in this documentation, its
C location in the call sequence, its meaning, and the default value.
C The use of any of this input requires IOPT = 1, and in that
C case all of this input is examined. A value of zero for any
C of these optional input variables will cause the default value to be
C used. Thus to use a subset of the optional input, simply preload
C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and
C then set those of interest to nonzero values.
C
C NAME LOCATION MEANING AND DEFAULT VALUE
C
C H0 RWORK(5) The step size to be attempted on the first step.
C The default value is determined by the solver.
C
C HMAX RWORK(6) The maximum absolute step size allowed.
C The default value is infinite.
C
C HMIN RWORK(7) The minimum absolute step size allowed.
C The default value is 0. (This lower bound is not
C enforced on the final step before reaching TCRIT
C when ITASK = 4 or 5.)
C
C MAXORD IWORK(5) The maximum order to be allowed. The default
C value is 12 if METH = 1, and 5 if METH = 2.
C If MAXORD exceeds the default value, it will
C be reduced to the default value.
C If MAXORD is changed during the problem, it may
C cause the current order to be reduced.
C
C MXSTEP IWORK(6) Maximum number of (internally defined) steps
C allowed during one call to the solver.
C The default value is 500.
C
C MXHNIL IWORK(7) Maximum number of messages printed (per problem)
C warning that T + H = T on a step (H = step size).
C This must be positive to result in a non-default
C value. The default value is 10.
C
C-----------------------------------------------------------------------
C Optional Output.
C
C As optional additional output from DVODE, the variables listed
C below are quantities related to the performance of DVODE
C which are available to the user. These are communicated by way of
C the work arrays, but also have internal mnemonic names as shown.
C Except where stated otherwise, all of this output is defined
C on any successful return from DVODE, and on any return with
C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return
C (ISTATE = -3), they will be unchanged from their existing values
C (if any), except possibly for TOLSF, LENRW, and LENIW.
C On any error return, output relevant to the error will be defined,
C as noted below.
C
C NAME LOCATION MEANING
C
C HU RWORK(11) The step size in t last used (successfully).
C
C HCUR RWORK(12) The step size to be attempted on the next step.
C
C TCUR RWORK(13) The current value of the independent variable
C which the solver has actually reached, i.e. the
C current internal mesh point in t. In the output,
C TCUR will always be at least as far from the
C initial value of t as the current argument T,
C but may be farther (if interpolation was done).
C
C TOLSF RWORK(14) A tolerance scale factor, greater than 1.0,
C computed when a request for too much accuracy was
C detected (ISTATE = -3 if detected at the start of
C the problem, ISTATE = -2 otherwise). If ITOL is
C left unaltered but RTOL and ATOL are uniformly
C scaled up by a factor of TOLSF for the next call,
C then the solver is deemed likely to succeed.
C (The user may also ignore TOLSF and alter the
C tolerance parameters in any other way appropriate.)
C
C NST IWORK(11) The number of steps taken for the problem so far.
C
C NFE IWORK(12) The number of f evaluations for the problem so far.
C
C NJE IWORK(13) The number of Jacobian evaluations so far.
C
C NQU IWORK(14) The method order last used (successfully).
C
C NQCUR IWORK(15) The order to be attempted on the next step.
C
C IMXER IWORK(16) The index of the component of largest magnitude in
C the weighted local error vector ( e(i)/EWT(i) ),
C on an error return with ISTATE = -4 or -5.
C
C LENRW IWORK(17) The length of RWORK actually required.
C This is defined on normal returns and on an illegal
C input return for insufficient storage.
C
C LENIW IWORK(18) The length of IWORK actually required.
C This is defined on normal returns and on an illegal
C input return for insufficient storage.
C
C NLU IWORK(19) The number of matrix LU decompositions so far.
C
C NNI IWORK(20) The number of nonlinear (Newton) iterations so far.
C
C NCFN IWORK(21) The number of convergence failures of the nonlinear
C solver so far.
C
C NETF IWORK(22) The number of error test failures of the integrator
C so far.
C
C The following two arrays are segments of the RWORK array which
C may also be of interest to the user as optional output.
C For each array, the table below gives its internal name,
C its base address in RWORK, and its description.
C
C NAME BASE ADDRESS DESCRIPTION
C
C YH 21 The Nordsieck history array, of size NYH by
C (NQCUR + 1), where NYH is the initial value
C of NEQ. For j = 0,1,...,NQCUR, column j+1
C of YH contains HCUR**j/factorial(j) times
C the j-th derivative of the interpolating
C polynomial currently representing the
C solution, evaluated at t = TCUR.
C
C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
C corrections on each step, scaled in the output
C to represent the estimated local error in Y
C on the last step. This is the vector e in
C the description of the error control. It is
C defined only on a successful return from DVODE.
C
C-----------------------------------------------------------------------
C Interrupting and Restarting
C
C If the integration of a given problem by DVODE is to be
C interrrupted and then later continued, such as when restarting
C an interrupted run or alternating between two or more ODE problems,
C the user should save, following the return from the last DVODE call
C prior to the interruption, the contents of the call sequence
C variables and internal COMMON blocks, and later restore these
C values before the next DVODE call for that problem. To save
C and restore the COMMON blocks, use subroutine DVSRCO, as
C described below in part ii.
C
C In addition, if non-default values for either LUN or MFLAG are
C desired, an extra call to XSETUN and/or XSETF should be made just
C before continuing the integration. See Part ii below for details.
C
C-----------------------------------------------------------------------
C Part ii. Other Routines Callable.
C
C The following are optional calls which the user may make to
C gain additional capabilities in conjunction with DVODE.
C (The routines XSETUN and XSETF are designed to conform to the
C SLATEC error handling package.)
C
C FORM OF CALL FUNCTION
C CALL XSETUN(LUN) Set the logical unit number, LUN, for
C output of messages from DVODE, if
C the default is not desired.
C The default value of LUN is 6.
C
C CALL XSETF(MFLAG) Set a flag to control the printing of
C messages by DVODE.
C MFLAG = 0 means do not print. (Danger..
C This risks losing valuable information.)
C MFLAG = 1 means print (the default).
C
C Either of the above calls may be made at
C any time and will take effect immediately.
C
C CALL DVSRCO(RSAV,ISAV,JOB) Saves and restores the contents of
C the internal COMMON blocks used by
C DVODE. (See Part iii below.)
C RSAV must be a real array of length 49
C or more, and ISAV must be an integer
C array of length 40 or more.
C JOB=1 means save COMMON into RSAV/ISAV.
C JOB=2 means restore COMMON from RSAV/ISAV.
C DVSRCO is useful if one is
C interrupting a run and restarting
C later, or alternating between two or
C more problems solved with DVODE.
C
C CALL DVINDY(,,,,,) Provide derivatives of y, of various
C (See below.) orders, at a specified point T, if
C desired. It may be called only after
C a successful return from DVODE.
C
C The detailed instructions for using DVINDY are as follows.
C The form of the call is..
C
C CALL DVINDY (T, K, RWORK(21), NYH, DKY, IFLAG)
C
C The input parameters are..
C
C T = Value of independent variable where answers are desired
C (normally the same as the T last returned by DVODE).
C For valid results, T must lie between TCUR - HU and TCUR.
C (See optional output for TCUR and HU.)
C K = Integer order of the derivative desired. K must satisfy
C 0 .le. K .le. NQCUR, where NQCUR is the current order
C (see optional output). The capability corresponding
C to K = 0, i.e. computing y(T), is already provided
C by DVODE directly. Since NQCUR .ge. 1, the first
C derivative dy/dt is always available with DVINDY.
C RWORK(21) = The base address of the history array YH.
C NYH = Column length of YH, equal to the initial value of NEQ.
C
C The output parameters are..
C
C DKY = A real array of length NEQ containing the computed value
C of the K-th derivative of y(t).
C IFLAG = Integer flag, returned as 0 if K and T were legal,
C -1 if K was illegal, and -2 if T was illegal.
C On an error return, a message is also written.
C-----------------------------------------------------------------------
C Part iii. COMMON Blocks.
C If DVODE is to be used in an overlay situation, the user
C must declare, in the primary overlay, the variables in..
C (1) the call sequence to DVODE,
C (2) the two internal COMMON blocks
C /DVOD01/ of length 81 (48 double precision words
C followed by 33 integer words),
C /DVOD02/ of length 9 (1 double precision word
C followed by 8 integer words),
C
C If DVODE is used on a system in which the contents of internal
C COMMON blocks are not preserved between calls, the user should
C declare the above two COMMON blocks in his main program to insure
C that their contents are preserved.
C
C-----------------------------------------------------------------------
C Part iv. Optionally Replaceable Solver Routines.
C
C Below are descriptions of two routines in the DVODE package which
C relate to the measurement of errors. Either routine can be
C replaced by a user-supplied version, if desired. However, since such
C a replacement may have a major impact on performance, it should be
C done only when absolutely necessary, and only with great caution.
C (Note.. The means by which the package version of a routine is
C superseded by the user's version may be system-dependent.)
C
C (a) DEWSET.
C The following subroutine is called just before each internal
C integration step, and sets the array of error weights, EWT, as
C described under ITOL/RTOL/ATOL above..
C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)
C where NEQ, ITOL, RTOL, and ATOL are as in the DVODE call sequence,
C YCUR contains the current dependent variable vector, and
C EWT is the array of weights set by DEWSET.
C
C If the user supplies this subroutine, it must return in EWT(i)
C (i = 1,...,NEQ) a positive quantity suitable for comparison with
C errors in Y(i). The EWT array returned by DEWSET is passed to the
C DVNORM routine (See below.), and also used by DVODE in the computation
C of the optional output IMXER, the diagonal Jacobian approximation,
C and the increments for difference quotient Jacobians.
C
C In the user-supplied version of DEWSET, it may be desirable to use
C the current values of derivatives of y. Derivatives up to order NQ
C are available from the history array YH, described above under
C Optional Output. In DEWSET, YH is identical to the YCUR array,
C extended to NQ + 1 columns with a column length of NYH and scale
C factors of h**j/factorial(j). On the first call for the problem,
C given by NST = 0, NQ is 1 and H is temporarily set to 1.0.
C NYH is the initial value of NEQ. The quantities NQ, H, and NST
C can be obtained by including in DEWSET the statements..
C DOUBLE PRECISION RVOD, H, HU
C COMMON /DVOD01/ RVOD(48), IVOD(33)
C COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C NQ = IVOD(28)
C H = RVOD(21)
C Thus, for example, the current value of dy/dt can be obtained as
C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is
C unnecessary when NST = 0).
C
C (b) DVNORM.
C The following is a real function routine which computes the weighted
C root-mean-square norm of a vector v..
C D = DVNORM (N, V, W)
C where..
C N = the length of the vector,
C V = real array of length N containing the vector,
C W = real array of length N containing weights,
C D = sqrt( (1/N) * sum(V(i)*W(i))**2 ).
C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where
C EWT is as set by subroutine DEWSET.
C
C If the user supplies this function, it should return a non-negative
C value of DVNORM suitable for use in the error control in DVODE.
C None of the arguments should be altered by DVNORM.
C For example, a user-supplied DVNORM routine might..
C -substitute a max-norm of (V(i)*W(i)) for the rms-norm, or
C -ignore some components of V in the norm, with the effect of
C suppressing the error control on those components of Y.
C-----------------------------------------------------------------------
C Other Routines in the DVODE Package.
C
C In addition to subroutine DVODE, the DVODE package includes the
C following subroutines and function routines..
C DVHIN computes an approximate step size for the initial step.
C DVINDY computes an interpolated value of the y vector at t = TOUT.
C DVSTEP is the core integrator, which does one step of the
C integration and the associated error control.
C DVSET sets all method coefficients and test constants.
C DVNLSD solves the underlying nonlinear system -- the corrector.
C DVJAC computes and preprocesses the Jacobian matrix J = df/dy
C and the Newton iteration matrix P = I - (h/l1)*J.
C DVSOL manages solution of linear system in chord iteration.
C DVJUST adjusts the history array on a change of order.
C DEWSET sets the error weight vector EWT before each step.
C DVNORM computes the weighted r.m.s. norm of a vector.
C DVSRCO is a user-callable routine to save and restore
C the contents of the internal COMMON blocks.
C DACOPY is a routine to copy one two-dimensional array to another.
C DGETRF and DGETRS are routines from LAPACK for solving full
C systems of linear algebraic equations.
C DGBTRF and DGBTRS are routines from LAPACK for solving banded
C linear systems.
C DAXPY, DSCAL, and DCOPY are basic linear algebra modules (BLAS).
C D1MACH sets the unit roundoff of the machine.
C XERRWD, XSETUN, XSETF, and IXSAV handle the printing of all
C error messages and warnings. XERRWD is machine-dependent.
C Note.. DVNORM, D1MACH, and IXSAV are function routines.
C All the others are subroutines.
C
C The intrinsic and external routines used by the DVODE package are..
C ABS, MAX, MIN, REAL, SIGN, SQRT, and WRITE.
C
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for labeled COMMON block DVOD02 --------------------
C
DOUBLE PRECISION HU
INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Type declarations for local variables --------------------------------
C
EXTERNAL DVNLSD
LOGICAL IHIT
DOUBLE PRECISION ATOLI, BIG, EWTI, FOUR, H0, HMAX, HMX, HUN, ONE,
1 PT2, RH, RTOLI, SIZE, TCRIT, TNEXT, TOLSF, TP, TWO, ZERO
INTEGER I, IER, IFLAG, IMXER, JCO, KGO, LENIW, LENJ, LENP, LENRW,
1 LENWM, LF0, MBAND, MFA, ML, MORD, MU, MXHNL0, MXSTP0, NITER,
2 NSLAST
CHARACTER*80 MSG
C
C Type declaration for function subroutines called ---------------------
C
DOUBLE PRECISION D1MACH, DVNORM
C
DIMENSION MORD(2)
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to DVODE.
C-----------------------------------------------------------------------
SAVE MORD, MXHNL0, MXSTP0
SAVE ZERO, ONE, TWO, FOUR, PT2, HUN
C-----------------------------------------------------------------------
C The following internal COMMON blocks contain variables which are
C communicated between subroutines in the DVODE package, or which are
C to be saved between calls to DVODE.
C In each block, real variables precede integers.
C The block /DVOD01/ appears in subroutines DVODE, DVINDY, DVSTEP,
C DVSET, DVNLSD, DVJAC, DVSOL, DVJUST and DVSRCO.
C The block /DVOD02/ appears in subroutines DVODE, DVINDY, DVSTEP,
C DVNLSD, DVJAC, and DVSRCO.
C
C The variables stored in the internal COMMON blocks are as follows..
C
C ACNRM = Weighted r.m.s. norm of accumulated correction vectors.
C CCMXJ = Threshhold on DRC for updating the Jacobian. (See DRC.)
C CONP = The saved value of TQ(5).
C CRATE = Estimated corrector convergence rate constant.
C DRC = Relative change in H*RL1 since last DVJAC call.
C EL = Real array of integration coefficients. See DVSET.
C ETA = Saved tentative ratio of new to old H.
C ETAMAX = Saved maximum value of ETA to be allowed.
C H = The step size.
C HMIN = The minimum absolute value of the step size H to be used.
C HMXI = Inverse of the maximum absolute value of H to be used.
C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
C HNEW = The step size to be attempted on the next step.
C HSCAL = Stepsize in scaling of YH array.
C PRL1 = The saved value of RL1.
C RC = Ratio of current H*RL1 to value on last DVJAC call.
C RL1 = The reciprocal of the coefficient EL(1).
C TAU = Real vector of past NQ step sizes, length 13.
C TQ = A real vector of length 5 in which DVSET stores constants
C used for the convergence test, the error test, and the
C selection of H at a new order.
C TN = The independent variable, updated on each step taken.
C UROUND = The machine unit roundoff. The smallest positive real number
C such that 1.0 + UROUND .ne. 1.0
C ICF = Integer flag for convergence failure in DVNLSD..
C 0 means no failures.
C 1 means convergence failure with out of date Jacobian
C (recoverable error).
C 2 means convergence failure with current Jacobian or
C singular matrix (unrecoverable error).
C INIT = Saved integer flag indicating whether initialization of the
C problem has been done (INIT = 1) or not.
C IPUP = Saved flag to signal updating of Newton matrix.
C JCUR = Output flag from DVJAC showing Jacobian status..
C JCUR = 0 means J is not current.
C JCUR = 1 means J is current.
C JSTART = Integer flag used as input to DVSTEP..
C 0 means perform the first step.
C 1 means take a new step continuing from the last.
C -1 means take the next step with a new value of MAXORD,
C HMIN, HMXI, N, METH, MITER, and/or matrix parameters.
C On return, DVSTEP sets JSTART = 1.
C JSV = Integer flag for Jacobian saving, = sign(MF).
C KFLAG = A completion code from DVSTEP with the following meanings..
C 0 the step was succesful.
C -1 the requested error could not be achieved.
C -2 corrector convergence could not be achieved.
C -3, -4 fatal error in VNLS (can not occur here).
C KUTH = Input flag to DVSTEP showing whether H was reduced by the
C driver. KUTH = 1 if H was reduced, = 0 otherwise.
C L = Integer variable, NQ + 1, current order plus one.
C LMAX = MAXORD + 1 (used for dimensioning).
C LOCJS = A pointer to the saved Jacobian, whose storage starts at
C WM(LOCJS), if JSV = 1.
C LYH, LEWT, LACOR, LSAVF, LWM, LIWM = Saved integer pointers
C to segments of RWORK and IWORK.
C MAXORD = The maximum order of integration method to be allowed.
C METH/MITER = The method flags. See MF.
C MSBJ = The maximum number of steps between J evaluations, = 50.
C MXHNIL = Saved value of optional input MXHNIL.
C MXSTEP = Saved value of optional input MXSTEP.
C N = The number of first-order ODEs, = NEQ.
C NEWH = Saved integer to flag change of H.
C NEWQ = The method order to be used on the next step.
C NHNIL = Saved counter for occurrences of T + H = T.
C NQ = Integer variable, the current integration method order.
C NQNYH = Saved value of NQ*NYH.
C NQWAIT = A counter controlling the frequency of order changes.
C An order change is about to be considered if NQWAIT = 1.
C NSLJ = The number of steps taken as of the last Jacobian update.
C NSLP = Saved value of NST as of last Newton matrix update.
C NYH = Saved value of the initial value of NEQ.
C HU = The step size in t last used.
C NCFN = Number of nonlinear convergence failures so far.
C NETF = The number of error test failures of the integrator so far.
C NFE = The number of f evaluations for the problem so far.
C NJE = The number of Jacobian evaluations so far.
C NLU = The number of matrix LU decompositions so far.
C NNI = Number of nonlinear iterations so far.
C NQU = The method order last used.
C NST = The number of steps taken for the problem so far.
C-----------------------------------------------------------------------
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
DATA MORD(1) /12/, MORD(2) /5/, MXSTP0 /500/, MXHNL0 /10/
DATA ZERO /0.0D0/, ONE /1.0D0/, TWO /2.0D0/, FOUR /4.0D0/,
1 PT2 /0.2D0/, HUN /100.0D0/
C-----------------------------------------------------------------------
C Block A.
C This code block is executed on every call.
C It tests ISTATE and ITASK for legality and branches appropriately.
C If ISTATE .gt. 1 but the flag INIT shows that initialization has
C not yet been done, an error return occurs.
C If ISTATE = 1 and TOUT = T, return immediately.
C-----------------------------------------------------------------------
IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
IF (ISTATE .EQ. 1) GO TO 10
IF (INIT .NE. 1) GO TO 603
IF (ISTATE .EQ. 2) GO TO 200
GO TO 20
10 INIT = 0
IF (TOUT .EQ. T) RETURN
C-----------------------------------------------------------------------
C Block B.
C The next code block is executed for the initial call (ISTATE = 1),
C or for a continuation call with parameter changes (ISTATE = 3).
C It contains checking of all input and various initializations.
C
C First check legality of the non-optional input NEQ, ITOL, IOPT,
C MF, ML, and MU.
C-----------------------------------------------------------------------
20 IF (NEQ .LE. 0) GO TO 604
IF (ISTATE .EQ. 1) GO TO 25
IF (NEQ .GT. N) GO TO 605
25 N = NEQ
IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607
JSV = SIGN(1,MF)
MFA = ABS(MF)
METH = MFA/10
MITER = MFA - 10*METH
IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
IF (MITER .LE. 3) GO TO 30
ML = IWORK(1)
MU = IWORK(2)
IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609
IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
30 CONTINUE
C Next process and check the optional input. ---------------------------
IF (IOPT .EQ. 1) GO TO 40
MAXORD = MORD(METH)
MXSTEP = MXSTP0
MXHNIL = MXHNL0
IF (ISTATE .EQ. 1) H0 = ZERO
HMXI = ZERO
HMIN = ZERO
GO TO 60
40 MAXORD = IWORK(5)
IF (MAXORD .LT. 0) GO TO 611
IF (MAXORD .EQ. 0) MAXORD = 100
MAXORD = MIN(MAXORD,MORD(METH))
MXSTEP = IWORK(6)
IF (MXSTEP .LT. 0) GO TO 612
IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
MXHNIL = IWORK(7)
IF (MXHNIL .LT. 0) GO TO 613
IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
IF (ISTATE .NE. 1) GO TO 50
H0 = RWORK(5)
IF ((TOUT - T)*H0 .LT. ZERO) GO TO 614
50 HMAX = RWORK(6)
IF (HMAX .LT. ZERO) GO TO 615
HMXI = ZERO
IF (HMAX .GT. ZERO) HMXI = ONE/HMAX
HMIN = RWORK(7)
IF (HMIN .LT. ZERO) GO TO 616
C-----------------------------------------------------------------------
C Set work array pointers and check lengths LRW and LIW.
C Pointers to segments of RWORK and IWORK are named by prefixing L to
C the name of the segment. E.g., the segment YH starts at RWORK(LYH).
C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR.
C Within WM, LOCJS is the location of the saved Jacobian (JSV .gt. 0).
C-----------------------------------------------------------------------
60 LYH = 21
IF (ISTATE .EQ. 1) NYH = N
LWM = LYH + (MAXORD + 1)*NYH
JCO = MAX(0,JSV)
IF (MITER .EQ. 0) LENWM = 0
IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
LENWM = 2 + (1 + JCO)*N*N
LOCJS = N*N + 3
ENDIF
IF (MITER .EQ. 3) LENWM = 2 + N
IF (MITER .EQ. 4 .OR. MITER .EQ. 5) THEN
MBAND = ML + MU + 1
LENP = (MBAND + ML)*N
LENJ = MBAND*N
LENWM = 2 + LENP + JCO*LENJ
LOCJS = LENP + 3
ENDIF
LEWT = LWM + LENWM
LSAVF = LEWT + N
LACOR = LSAVF + N
LENRW = LACOR + N - 1
IWORK(17) = LENRW
LIWM = 1
LENIW = 30 + N
IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 30
IWORK(18) = LENIW
IF (LENRW .GT. LRW) GO TO 617
IF (LENIW .GT. LIW) GO TO 618
C Check RTOL and ATOL for legality. ------------------------------------
RTOLI = RTOL(1)
ATOLI = ATOL(1)
DO 70 I = 1,N
IF (ITOL .GE. 3) RTOLI = RTOL(I)
IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
IF (RTOLI .LT. ZERO) GO TO 619
IF (ATOLI .LT. ZERO) GO TO 620
70 CONTINUE
IF (ISTATE .EQ. 1) GO TO 100
C If ISTATE = 3, set flag to signal parameter changes to DVSTEP. -------
JSTART = -1
IF (NQ .LE. MAXORD) GO TO 90
C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. ---------
CALL DCOPY (N, RWORK(LWM), 1, RWORK(LSAVF), 1)
C Reload WM(1) = RWORK(LWM), since LWM may have changed. ---------------
90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
C bug fix 12 Nov 1998
GO TO 200
C-----------------------------------------------------------------------
C Block C.
C The next block is for the initial call only (ISTATE = 1).
C It contains all remaining initializations, the initial call to F,
C and the calculation of the initial step size.
C The error weights in EWT are inverted after being loaded.
C-----------------------------------------------------------------------
100 UROUND = D1MACH(4)
TN = T
IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110
TCRIT = RWORK(1)
IF ((TCRIT - TOUT)*(TOUT - T) .LT. ZERO) GO TO 625
IF (H0 .NE. ZERO .AND. (T + H0 - TCRIT)*H0 .GT. ZERO)
1 H0 = TCRIT - T
110 JSTART = 0
IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
CCMXJ = PT2
MSBJ = 50
NHNIL = 0
NST = 0
NJE = 0
NNI = 0
NCFN = 0
NETF = 0
NLU = 0
NSLJ = 0
NSLAST = 0
HU = ZERO
NQU = 0
C Initial call to F. (LF0 points to YH(*,2).) -------------------------
LF0 = LYH + NYH
CALL F (N, T, Y, RWORK(LF0), RPAR, IPAR)
NFE = 1
C Load the initial value vector in YH. ---------------------------------
CALL DCOPY (N, Y, 1, RWORK(LYH), 1)
C Load and invert the EWT array. (H is temporarily set to 1.0.) -------
NQ = 1
H = ONE
CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
DO 120 I = 1,N
IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 621
120 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
IF (H0 .NE. ZERO) GO TO 180
C Call DVHIN to set initial step size H0 to be attempted. --------------
CALL DVHIN (N, T, RWORK(LYH), RWORK(LF0), F, RPAR, IPAR, TOUT,
1 UROUND, RWORK(LEWT), ITOL, ATOL, Y, RWORK(LACOR), H0,
2 NITER, IER)
NFE = NFE + NITER
IF (IER .NE. 0) GO TO 622
C Adjust H0 if necessary to meet HMAX bound. ---------------------------
180 RH = ABS(H0)*HMXI
IF (RH .GT. ONE) H0 = H0/RH
C Load H with H0 and scale YH(*,2) by H0. ------------------------------
H = H0
CALL DSCAL (N, H0, RWORK(LF0), 1)
GO TO 270
C-----------------------------------------------------------------------
C Block D.
C The next code block is for continuation calls only (ISTATE = 2 or 3)
C and is to check stop conditions before taking a step.
C-----------------------------------------------------------------------
200 NSLAST = NST
KUTH = 0
GO TO (210, 250, 220, 230, 240), ITASK
210 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
IF (IFLAG .NE. 0) GO TO 627
T = TOUT
GO TO 420
220 TP = TN - HU*(ONE + HUN*UROUND)
IF ((TP - TOUT)*H .GT. ZERO) GO TO 623
IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
GO TO 400
230 TCRIT = RWORK(1)
IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
IF ((TCRIT - TOUT)*H .LT. ZERO) GO TO 625
IF ((TN - TOUT)*H .LT. ZERO) GO TO 245
CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
IF (IFLAG .NE. 0) GO TO 627
T = TOUT
GO TO 420
240 TCRIT = RWORK(1)
IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
245 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
IF (IHIT) GO TO 400
TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
H = (TCRIT - TN)*(ONE - FOUR*UROUND)
KUTH = 1
C-----------------------------------------------------------------------
C Block E.
C The next block is normally executed for all calls and contains
C the call to the one-step core integrator DVSTEP.
C
C This is a looping point for the integration steps.
C
C First check for too many steps being taken, update EWT (if not at
C start of problem), check for too much accuracy being requested, and
C check for H below the roundoff level in T.
C-----------------------------------------------------------------------
250 CONTINUE
IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
DO 260 I = 1,N
IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 510
260 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT))
IF (TOLSF .LE. ONE) GO TO 280
TOLSF = TOLSF*TWO
IF (NST .EQ. 0) GO TO 626
GO TO 520
280 IF ((TN + H) .NE. TN) GO TO 290
NHNIL = NHNIL + 1
IF (NHNIL .GT. MXHNIL) GO TO 290
MSG = 'DVODE-- Warning..internal T (=R1) and H (=R2) are'
CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG=' such that in the machine, T + H = T on the next step '
CALL XERRWD (MSG, 60, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' (H = step size). solver will continue anyway'
CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 2, TN, H)
IF (NHNIL .LT. MXHNIL) GO TO 290
MSG = 'DVODE-- Above warning has been issued I1 times. '
CALL XERRWD (MSG, 50, 102, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' it will not be issued again for this problem'
CALL XERRWD (MSG, 50, 102, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
290 CONTINUE
C-----------------------------------------------------------------------
C CALL DVSTEP (Y, YH, NYH, YH, EWT, SAVF, VSAV, ACOR,
C WM, IWM, F, JAC, F, DVNLSD, RPAR, IPAR)
C-----------------------------------------------------------------------
CALL DVSTEP (Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT),
1 RWORK(LSAVF), Y, RWORK(LACOR), RWORK(LWM), IWORK(LIWM),
2 F, JAC, F, DVNLSD, RPAR, IPAR)
KGO = 1 - KFLAG
C Branch on KFLAG. Note..In this version, KFLAG can not be set to -3.
C KFLAG .eq. 0, -1, -2
GO TO (300, 530, 540), KGO
C-----------------------------------------------------------------------
C Block F.
C The following block handles the case of a successful return from the
C core integrator (KFLAG = 0). Test for stop conditions.
C-----------------------------------------------------------------------
300 INIT = 1
KUTH = 0
GO TO (310, 400, 330, 340, 350), ITASK
C ITASK = 1. If TOUT has been reached, interpolate. -------------------
310 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
T = TOUT
GO TO 420
C ITASK = 3. Jump to exit if TOUT was reached. ------------------------
330 IF ((TN - TOUT)*H .GE. ZERO) GO TO 400
GO TO 250
C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary.
340 IF ((TN - TOUT)*H .LT. ZERO) GO TO 345
CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
T = TOUT
GO TO 420
345 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
IF (IHIT) GO TO 400
TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
H = (TCRIT - TN)*(ONE - FOUR*UROUND)
KUTH = 1
GO TO 250
C ITASK = 5. See if TCRIT was reached and jump to exit. ---------------
350 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
C-----------------------------------------------------------------------
C Block G.
C The following block handles all successful returns from DVODE.
C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly.
C ISTATE is set to 2, and the optional output is loaded into the work
C arrays before returning.
C-----------------------------------------------------------------------
400 CONTINUE
CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
T = TN
IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
IF (IHIT) T = TCRIT
420 ISTATE = 2
RWORK(11) = HU
RWORK(12) = HNEW
RWORK(13) = TN
IWORK(11) = NST
IWORK(12) = NFE
IWORK(13) = NJE
IWORK(14) = NQU
IWORK(15) = NEWQ
IWORK(19) = NLU
IWORK(20) = NNI
IWORK(21) = NCFN
IWORK(22) = NETF
RETURN
C-----------------------------------------------------------------------
C Block H.
C The following block handles all unsuccessful returns other than
C those for illegal input. First the error message routine is called.
C if there was an error test or convergence test failure, IMXER is set.
C Then Y is loaded from YH, and T is set to TN.
C The optional output is loaded into the work arrays before returning.
C-----------------------------------------------------------------------
C The maximum number of steps was taken before reaching TOUT. ----------
500 MSG = 'DVODE-- At current T (=R1), MXSTEP (=I1) steps '
CALL XERRWD (MSG, 50, 201, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' taken on this call before reaching TOUT '
CALL XERRWD (MSG, 50, 201, 1, 1, MXSTEP, 0, 1, TN, ZERO)
ISTATE = -1
GO TO 580
C EWT(i) .le. 0.0 for some i (not at start of problem). ----------------
510 EWTI = RWORK(LEWT+I-1)
MSG = 'DVODE-- At T (=R1), EWT(I1) has become R2 .le. 0.'
CALL XERRWD (MSG, 50, 202, 1, 1, I, 0, 2, TN, EWTI)
ISTATE = -6
GO TO 580
C Too much accuracy requested for machine precision. -------------------
520 MSG = 'DVODE-- At T (=R1), too much accuracy requested '
CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' for precision of machine.. see TOLSF (=R2) '
CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 2, TN, TOLSF)
RWORK(14) = TOLSF
ISTATE = -2
GO TO 580
C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. -----
530 MSG = 'DVODE-- At T(=R1) and step size H(=R2), the error'
CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' test failed repeatedly or with abs(H) = HMIN'
CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 2, TN, H)
ISTATE = -4
GO TO 560
C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ----
540 MSG = 'DVODE-- At T (=R1) and step size H (=R2), the '
CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' corrector convergence failed repeatedly '
CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG = ' or with abs(H) = HMIN '
CALL XERRWD (MSG, 30, 205, 1, 0, 0, 0, 2, TN, H)
ISTATE = -5
C Compute IMXER if relevant. -------------------------------------------
560 BIG = ZERO
IMXER = 1
DO 570 I = 1,N
SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
IF (BIG .GE. SIZE) GO TO 570
BIG = SIZE
IMXER = I
570 CONTINUE
IWORK(16) = IMXER
C Set Y vector, T, and optional output. --------------------------------
580 CONTINUE
CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
T = TN
RWORK(11) = HU
RWORK(12) = H
RWORK(13) = TN
IWORK(11) = NST
IWORK(12) = NFE
IWORK(13) = NJE
IWORK(14) = NQU
IWORK(15) = NQ
IWORK(19) = NLU
IWORK(20) = NNI
IWORK(21) = NCFN
IWORK(22) = NETF
RETURN
C-----------------------------------------------------------------------
C Block I.
C The following block handles all error returns due to illegal input
C (ISTATE = -3), as detected before calling the core integrator.
C First the error message routine is called. If the illegal input
C is a negative ISTATE, the run is aborted (apparent infinite loop).
C-----------------------------------------------------------------------
601 MSG = 'DVODE-- ISTATE (=I1) illegal '
CALL XERRWD (MSG, 30, 1, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
IF (ISTATE .LT. 0) GO TO 800
GO TO 700
602 MSG = 'DVODE-- ITASK (=I1) illegal '
CALL XERRWD (MSG, 30, 2, 1, 1, ITASK, 0, 0, ZERO, ZERO)
GO TO 700
603 MSG='DVODE-- ISTATE (=I1) .gt. 1 but DVODE not initialized '
CALL XERRWD (MSG, 60, 3, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
GO TO 700
604 MSG = 'DVODE-- NEQ (=I1) .lt. 1 '
CALL XERRWD (MSG, 30, 4, 1, 1, NEQ, 0, 0, ZERO, ZERO)
GO TO 700
605 MSG = 'DVODE-- ISTATE = 3 and NEQ increased (I1 to I2) '
CALL XERRWD (MSG, 50, 5, 1, 2, N, NEQ, 0, ZERO, ZERO)
GO TO 700
606 MSG = 'DVODE-- ITOL (=I1) illegal '
CALL XERRWD (MSG, 30, 6, 1, 1, ITOL, 0, 0, ZERO, ZERO)
GO TO 700
607 MSG = 'DVODE-- IOPT (=I1) illegal '
CALL XERRWD (MSG, 30, 7, 1, 1, IOPT, 0, 0, ZERO, ZERO)
GO TO 700
608 MSG = 'DVODE-- MF (=I1) illegal '
CALL XERRWD (MSG, 30, 8, 1, 1, MF, 0, 0, ZERO, ZERO)
GO TO 700
609 MSG = 'DVODE-- ML (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
CALL XERRWD (MSG, 50, 9, 1, 2, ML, NEQ, 0, ZERO, ZERO)
GO TO 700
610 MSG = 'DVODE-- MU (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
CALL XERRWD (MSG, 50, 10, 1, 2, MU, NEQ, 0, ZERO, ZERO)
GO TO 700
611 MSG = 'DVODE-- MAXORD (=I1) .lt. 0 '
CALL XERRWD (MSG, 30, 11, 1, 1, MAXORD, 0, 0, ZERO, ZERO)
GO TO 700
612 MSG = 'DVODE-- MXSTEP (=I1) .lt. 0 '
CALL XERRWD (MSG, 30, 12, 1, 1, MXSTEP, 0, 0, ZERO, ZERO)
GO TO 700
613 MSG = 'DVODE-- MXHNIL (=I1) .lt. 0 '
CALL XERRWD (MSG, 30, 13, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
GO TO 700
614 MSG = 'DVODE-- TOUT (=R1) behind T (=R2) '
CALL XERRWD (MSG, 40, 14, 1, 0, 0, 0, 2, TOUT, T)
MSG = ' integration direction is given by H0 (=R1) '
CALL XERRWD (MSG, 50, 14, 1, 0, 0, 0, 1, H0, ZERO)
GO TO 700
615 MSG = 'DVODE-- HMAX (=R1) .lt. 0.0 '
CALL XERRWD (MSG, 30, 15, 1, 0, 0, 0, 1, HMAX, ZERO)
GO TO 700
616 MSG = 'DVODE-- HMIN (=R1) .lt. 0.0 '
CALL XERRWD (MSG, 30, 16, 1, 0, 0, 0, 1, HMIN, ZERO)
GO TO 700
617 CONTINUE
MSG='DVODE-- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)'
CALL XERRWD (MSG, 60, 17, 1, 2, LENRW, LRW, 0, ZERO, ZERO)
GO TO 700
618 CONTINUE
MSG='DVODE-- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)'
CALL XERRWD (MSG, 60, 18, 1, 2, LENIW, LIW, 0, ZERO, ZERO)
GO TO 700
619 MSG = 'DVODE-- RTOL(I1) is R1 .lt. 0.0 '
CALL XERRWD (MSG, 40, 19, 1, 1, I, 0, 1, RTOLI, ZERO)
GO TO 700
620 MSG = 'DVODE-- ATOL(I1) is R1 .lt. 0.0 '
CALL XERRWD (MSG, 40, 20, 1, 1, I, 0, 1, ATOLI, ZERO)
GO TO 700
621 EWTI = RWORK(LEWT+I-1)
MSG = 'DVODE-- EWT(I1) is R1 .le. 0.0 '
CALL XERRWD (MSG, 40, 21, 1, 1, I, 0, 1, EWTI, ZERO)
GO TO 700
622 CONTINUE
MSG='DVODE-- TOUT (=R1) too close to T(=R2) to start integration'
CALL XERRWD (MSG, 60, 22, 1, 0, 0, 0, 2, TOUT, T)
GO TO 700
623 CONTINUE
MSG='DVODE-- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) '
CALL XERRWD (MSG, 60, 23, 1, 1, ITASK, 0, 2, TOUT, TP)
GO TO 700
624 CONTINUE
MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) '
CALL XERRWD (MSG, 60, 24, 1, 0, 0, 0, 2, TCRIT, TN)
GO TO 700
625 CONTINUE
MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) '
CALL XERRWD (MSG, 60, 25, 1, 0, 0, 0, 2, TCRIT, TOUT)
GO TO 700
626 MSG = 'DVODE-- At start of problem, too much accuracy '
CALL XERRWD (MSG, 50, 26, 1, 0, 0, 0, 0, ZERO, ZERO)
MSG=' requested for precision of machine.. see TOLSF (=R1) '
CALL XERRWD (MSG, 60, 26, 1, 0, 0, 0, 1, TOLSF, ZERO)
RWORK(14) = TOLSF
GO TO 700
627 MSG='DVODE-- Trouble from DVINDY. ITASK = I1, TOUT = R1. '
CALL XERRWD (MSG, 60, 27, 1, 1, ITASK, 0, 1, TOUT, ZERO)
C
700 CONTINUE
ISTATE = -3
RETURN
C
800 MSG = 'DVODE-- Run aborted.. apparent infinite loop '
CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, ZERO, ZERO)
RETURN
C----------------------- End of Subroutine DVODE -----------------------
END
*DECK DVHIN
SUBROUTINE DVHIN (N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
1 EWT, ITOL, ATOL, Y, TEMP, H0, NITER, IER)
EXTERNAL F
DOUBLE PRECISION T0, Y0, YDOT, RPAR, TOUT, UROUND, EWT, ATOL, Y,
1 TEMP, H0
INTEGER N, IPAR, ITOL, NITER, IER
DIMENSION Y0(*), YDOT(*), EWT(*), ATOL(*), Y(*),
1 TEMP(*), RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C Call sequence input -- N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
C EWT, ITOL, ATOL, Y, TEMP
C Call sequence output -- H0, NITER, IER
C COMMON block variables accessed -- None
C
C Subroutines called by DVHIN.. F
C Function routines called by DVHIN.. DVNORM
C-----------------------------------------------------------------------
C This routine computes the step size, H0, to be attempted on the
C first step, when the user has not supplied a value for this.
C
C First we check that TOUT - T0 differs significantly from zero. Then
C an iteration is done to approximate the initial second derivative
C and this is used to define h from w.r.m.s.norm(h**2 * yddot / 2) = 1.
C A bias factor of 1/2 is applied to the resulting h.
C The sign of H0 is inferred from the initial values of TOUT and T0.
C
C Communication with DVHIN is done with the following variables..
C
C N = Size of ODE system, input.
C T0 = Initial value of independent variable, input.
C Y0 = Vector of initial conditions, input.
C YDOT = Vector of initial first derivatives, input.
C F = Name of subroutine for right-hand side f(t,y), input.
C RPAR, IPAR = Dummy names for user's real and integer work arrays.
C TOUT = First output value of independent variable
C UROUND = Machine unit roundoff
C EWT, ITOL, ATOL = Error weights and tolerance parameters
C as described in the driver routine, input.
C Y, TEMP = Work arrays of length N.
C H0 = Step size to be attempted, output.
C NITER = Number of iterations (and of f evaluations) to compute H0,
C output.
C IER = The error flag, returned with the value
C IER = 0 if no trouble occurred, or
C IER = -1 if TOUT and T0 are considered too close to proceed.
C-----------------------------------------------------------------------
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION AFI, ATOLI, DELYI, H, HALF, HG, HLB, HNEW, HRAT,
1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, YDDNRM
INTEGER I, ITER
C
C Type declaration for function subroutines called ---------------------
C
DOUBLE PRECISION DVNORM
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE HALF, HUN, PT1, TWO
DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/
C
NITER = 0
TDIST = ABS(TOUT - T0)
TROUND = UROUND*MAX(ABS(T0),ABS(TOUT))
IF (TDIST .LT. TWO*TROUND) GO TO 100
C
C Set a lower bound on h based on the roundoff level in T0 and TOUT. ---
HLB = HUN*TROUND
C Set an upper bound on h based on TOUT-T0 and the initial Y and YDOT. -
HUB = PT1*TDIST
ATOLI = ATOL(1)
DO 10 I = 1, N
IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
DELYI = PT1*ABS(Y0(I)) + ATOLI
AFI = ABS(YDOT(I))
IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI
10 CONTINUE
C
C Set initial guess for h as geometric mean of upper and lower bounds. -
ITER = 0
HG = SQRT(HLB*HUB)
C If the bounds have crossed, exit with the mean value. ----------------
IF (HUB .LT. HLB) THEN
H0 = HG
GO TO 90
ENDIF
C
C Looping point for iteration. -----------------------------------------
50 CONTINUE
C Estimate the second derivative as a difference quotient in f. --------
H = SIGN (HG, TOUT - T0)
T1 = T0 + H
DO 60 I = 1, N
60 Y(I) = Y0(I) + H*YDOT(I)
CALL F (N, T1, Y, TEMP, RPAR, IPAR)
DO 70 I = 1, N
70 TEMP(I) = (TEMP(I) - YDOT(I))/H
YDDNRM = DVNORM (N, TEMP, EWT)
C Get the corresponding new value of h. --------------------------------
IF (YDDNRM*HUB*HUB .GT. TWO) THEN
HNEW = SQRT(TWO/YDDNRM)
ELSE
HNEW = SQRT(HG*HUB)
ENDIF
ITER = ITER + 1
C-----------------------------------------------------------------------
C Test the stopping conditions.
C Stop if the new and previous h values differ by a factor of .lt. 2.
C Stop if four iterations have been done. Also, stop with previous h
C if HNEW/HG .gt. 2 after first iteration, as this probably means that
C the second derivative value is bad because of cancellation error.
C-----------------------------------------------------------------------
IF (ITER .GE. 4) GO TO 80
HRAT = HNEW/HG
IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80
IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN
HNEW = HG
GO TO 80
ENDIF
HG = HNEW
GO TO 50
C
C Iteration done. Apply bounds, bias factor, and sign. Then exit. ----
80 H0 = HNEW*HALF
IF (H0 .LT. HLB) H0 = HLB
IF (H0 .GT. HUB) H0 = HUB
90 H0 = SIGN(H0, TOUT - T0)
NITER = ITER
IER = 0
RETURN
C Error return for TOUT - T0 too small. --------------------------------
100 IER = -1
RETURN
C----------------------- End of Subroutine DVHIN -----------------------
END
*DECK DVINDY
SUBROUTINE DVINDY (T, K, YH, LDYH, DKY, IFLAG)
DOUBLE PRECISION T, YH, DKY
INTEGER K, LDYH, IFLAG
DIMENSION YH(LDYH,*), DKY(*)
C-----------------------------------------------------------------------
C Call sequence input -- T, K, YH, LDYH
C Call sequence output -- DKY, IFLAG
C COMMON block variables accessed..
C /DVOD01/ -- H, TN, UROUND, L, N, NQ
C /DVOD02/ -- HU
C
C Subroutines called by DVINDY.. DSCAL, XERRWD
C Function routines called by DVINDY.. None
C-----------------------------------------------------------------------
C DVINDY computes interpolated values of the K-th derivative of the
C dependent variable vector y, and stores it in DKY. This routine
C is called within the package with K = 0 and T = TOUT, but may
C also be called by the user for any K up to the current order.
C (See detailed instructions in the usage documentation.)
C-----------------------------------------------------------------------
C The computed values in DKY are gotten by interpolation using the
C Nordsieck history array YH. This array corresponds uniquely to a
C vector-valued polynomial of degree NQCUR or less, and DKY is set
C to the K-th derivative of this polynomial at T.
C The formula for DKY is..
C q
C DKY(i) = sum c(j,K) * (T - TN)**(j-K) * H**(-j) * YH(i,j+1)
C j=K
C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, TN = TCUR, H = HCUR.
C The quantities NQ = NQCUR, L = NQ+1, N, TN, and H are
C communicated by COMMON. The above sum is done in reverse order.
C IFLAG is returned negative if either K or T is out of bounds.
C
C Discussion above and comments in driver explain all variables.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for labeled COMMON block DVOD02 --------------------
C
DOUBLE PRECISION HU
INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION C, HUN, R, S, TFUZZ, TN1, TP, ZERO
INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1
CHARACTER*80 MSG
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE HUN, ZERO
C
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
DATA HUN /100.0D0/, ZERO /0.0D0/
C
IFLAG = 0
IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
TFUZZ = HUN*UROUND*(TN + HU)
TP = TN - HU - TFUZZ
TN1 = TN + TFUZZ
IF ((T-TP)*(T-TN1) .GT. ZERO) GO TO 90
C
S = (T - TN)/H
IC = 1
IF (K .EQ. 0) GO TO 15
JJ1 = L - K
DO 10 JJ = JJ1, NQ
10 IC = IC*JJ
15 C = REAL(IC)
DO 20 I = 1, N
20 DKY(I) = C*YH(I,L)
IF (K .EQ. NQ) GO TO 55
JB2 = NQ - K
DO 50 JB = 1, JB2
J = NQ - JB
JP1 = J + 1
IC = 1
IF (K .EQ. 0) GO TO 35
JJ1 = JP1 - K
DO 30 JJ = JJ1, J
30 IC = IC*JJ
35 C = REAL(IC)
DO 40 I = 1, N
40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
50 CONTINUE
IF (K .EQ. 0) RETURN
55 R = H**(-K)
CALL DSCAL (N, R, DKY, 1)
RETURN
C
80 MSG = 'DVINDY-- K (=I1) illegal '
CALL XERRWD (MSG, 30, 51, 1, 1, K, 0, 0, ZERO, ZERO)
IFLAG = -1
RETURN
90 MSG = 'DVINDY-- T (=R1) illegal '
CALL XERRWD (MSG, 30, 52, 1, 0, 0, 0, 1, T, ZERO)
MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) '
CALL XERRWD (MSG, 60, 52, 1, 0, 0, 0, 2, TP, TN)
IFLAG = -2
RETURN
C----------------------- End of Subroutine DVINDY ----------------------
END
*DECK DVSTEP
SUBROUTINE DVSTEP (Y, YH, LDYH, YH1, EWT, SAVF, VSAV, ACOR,
1 WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR)
EXTERNAL F, JAC, PSOL, VNLS
DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, VSAV, ACOR, WM, RPAR
INTEGER LDYH, IWM, IPAR
DIMENSION Y(*), YH(LDYH,*), YH1(*), EWT(*), SAVF(*), VSAV(*),
1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C Call sequence input -- Y, YH, LDYH, YH1, EWT, SAVF, VSAV,
C ACOR, WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR
C Call sequence output -- YH, ACOR, WM, IWM
C COMMON block variables accessed..
C /DVOD01/ ACNRM, EL(13), H, HMIN, HMXI, HNEW, HSCAL, RC, TAU(13),
C TQ(5), TN, JCUR, JSTART, KFLAG, KUTH,
C L, LMAX, MAXORD, N, NEWQ, NQ, NQWAIT
C /DVOD02/ HU, NCFN, NETF, NFE, NQU, NST
C
C Subroutines called by DVSTEP.. F, DAXPY, DCOPY, DSCAL,
C DVJUST, VNLS, DVSET
C Function routines called by DVSTEP.. DVNORM
C-----------------------------------------------------------------------
C DVSTEP performs one step of the integration of an initial value
C problem for a system of ordinary differential equations.
C DVSTEP calls subroutine VNLS for the solution of the nonlinear system
C arising in the time step. Thus it is independent of the problem
C Jacobian structure and the type of nonlinear system solution method.
C DVSTEP returns a completion flag KFLAG (in COMMON).
C A return with KFLAG = -1 or -2 means either ABS(H) = HMIN or 10
C consecutive failures occurred. On a return with KFLAG negative,
C the values of TN and the YH array are as of the beginning of the last
C step, and H is the last step size attempted.
C
C Communication with DVSTEP is done with the following variables..
C
C Y = An array of length N used for the dependent variable vector.
C YH = An LDYH by LMAX array containing the dependent variables
C and their approximate scaled derivatives, where
C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
C j-th derivative of y(i), scaled by H**j/factorial(j)
C (j = 0,1,...,NQ). On entry for the first step, the first
C two columns of YH must be set from the initial values.
C LDYH = A constant integer .ge. N, the first dimension of YH.
C N is the number of ODEs in the system.
C YH1 = A one-dimensional array occupying the same space as YH.
C EWT = An array of length N containing multiplicative weights
C for local error measurements. Local errors in y(i) are
C compared to 1.0/EWT(i) in various error tests.
C SAVF = An array of working storage, of length N.
C also used for input of YH(*,MAXORD+2) when JSTART = -1
C and MAXORD .lt. the current order NQ.
C VSAV = A work array of length N passed to subroutine VNLS.
C ACOR = A work array of length N, used for the accumulated
C corrections. On a successful return, ACOR(i) contains
C the estimated one-step local error in y(i).
C WM,IWM = Real and integer work arrays associated with matrix
C operations in VNLS.
C F = Dummy name for the user supplied subroutine for f.
C JAC = Dummy name for the user supplied Jacobian subroutine.
C PSOL = Dummy name for the subroutine passed to VNLS, for
C possible use there.
C VNLS = Dummy name for the nonlinear system solving subroutine,
C whose real name is dependent on the method used.
C RPAR, IPAR = Dummy names for user's real and integer work arrays.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for labeled COMMON block DVOD02 --------------------
C
DOUBLE PRECISION HU
INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION ADDON, BIAS1,BIAS2,BIAS3, CNQUOT, DDN, DSM, DUP,
1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF,
2 ETAQ, ETAQM1, ETAQP1, FLOTL, ONE, ONEPSM,
3 R, THRESH, TOLD, ZERO
INTEGER I, I1, I2, IBACK, J, JB, KFC, KFH, MXNCF, NCF, NFLAG
C
C Type declaration for function subroutines called ---------------------
C
DOUBLE PRECISION DVNORM
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE ADDON, BIAS1, BIAS2, BIAS3,
1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF, ETAQ, ETAQM1,
2 KFC, KFH, MXNCF, ONEPSM, THRESH, ONE, ZERO
C-----------------------------------------------------------------------
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
DATA KFC/-3/, KFH/-7/, MXNCF/10/
DATA ADDON /1.0D-6/, BIAS1 /6.0D0/, BIAS2 /6.0D0/,
1 BIAS3 /10.0D0/, ETACF /0.25D0/, ETAMIN /0.1D0/,
2 ETAMXF /0.2D0/, ETAMX1 /1.0D4/, ETAMX2 /10.0D0/,
3 ETAMX3 /10.0D0/, ONEPSM /1.00001D0/, THRESH /1.5D0/
DATA ONE/1.0D0/, ZERO/0.0D0/
C
KFLAG = 0
TOLD = TN
NCF = 0
JCUR = 0
NFLAG = 0
IF (JSTART .GT. 0) GO TO 20
IF (JSTART .EQ. -1) GO TO 100
C-----------------------------------------------------------------------
C On the first call, the order is set to 1, and other variables are
C initialized. ETAMAX is the maximum ratio by which H can be increased
C in a single step. It is normally 10, but is larger during the
C first step to compensate for the small initial H. If a failure
C occurs (in corrector convergence or error test), ETAMAX is set to 1
C for the next increase.
C-----------------------------------------------------------------------
LMAX = MAXORD + 1
NQ = 1
L = 2
NQNYH = NQ*LDYH
TAU(1) = H
PRL1 = ONE
RC = ZERO
ETAMAX = ETAMX1
NQWAIT = 2
HSCAL = H
GO TO 200
C-----------------------------------------------------------------------
C Take preliminary actions on a normal continuation step (JSTART.GT.0).
C If the driver changed H, then ETA must be reset and NEWH set to 1.
C If a change of order was dictated on the previous step, then
C it is done here and appropriate adjustments in the history are made.
C On an order decrease, the history array is adjusted by DVJUST.
C On an order increase, the history array is augmented by a column.
C On a change of step size H, the history array YH is rescaled.
C-----------------------------------------------------------------------
20 CONTINUE
IF (KUTH .EQ. 1) THEN
ETA = MIN(ETA,H/HSCAL)
NEWH = 1
ENDIF
50 IF (NEWH .EQ. 0) GO TO 200
IF (NEWQ .EQ. NQ) GO TO 150
IF (NEWQ .LT. NQ) THEN
CALL DVJUST (YH, LDYH, -1)
NQ = NEWQ
L = NQ + 1
NQWAIT = L
GO TO 150
ENDIF
IF (NEWQ .GT. NQ) THEN
CALL DVJUST (YH, LDYH, 1)
NQ = NEWQ
L = NQ + 1
NQWAIT = L
GO TO 150
ENDIF
C-----------------------------------------------------------------------
C The following block handles preliminaries needed when JSTART = -1.
C If N was reduced, zero out part of YH to avoid undefined references.
C If MAXORD was reduced to a value less than the tentative order NEWQ,
C then NQ is set to MAXORD, and a new H ratio ETA is chosen.
C Otherwise, we take the same preliminary actions as for JSTART .gt. 0.
C In any case, NQWAIT is reset to L = NQ + 1 to prevent further
C changes in order for that many steps.
C The new H ratio ETA is limited by the input H if KUTH = 1,
C by HMIN if KUTH = 0, and by HMXI in any case.
C Finally, the history array YH is rescaled.
C-----------------------------------------------------------------------
100 CONTINUE
LMAX = MAXORD + 1
IF (N .EQ. LDYH) GO TO 120
I1 = 1 + (NEWQ + 1)*LDYH
I2 = (MAXORD + 1)*LDYH
IF (I1 .GT. I2) GO TO 120
DO 110 I = I1, I2
110 YH1(I) = ZERO
120 IF (NEWQ .LE. MAXORD) GO TO 140
FLOTL = REAL(LMAX)
IF (MAXORD .LT. NQ-1) THEN
DDN = DVNORM (N, SAVF, EWT)/TQ(1)
ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
ENDIF
IF (MAXORD .EQ. NQ .AND. NEWQ .EQ. NQ+1) ETA = ETAQ
IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ+1) THEN
ETA = ETAQM1
CALL DVJUST (YH, LDYH, -1)
ENDIF
IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ) THEN
DDN = DVNORM (N, SAVF, EWT)/TQ(1)
ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
CALL DVJUST (YH, LDYH, -1)
ENDIF
ETA = MIN(ETA,ONE)
NQ = MAXORD
L = LMAX
140 IF (KUTH .EQ. 1) ETA = MIN(ETA,ABS(H/HSCAL))
IF (KUTH .EQ. 0) ETA = MAX(ETA,HMIN/ABS(HSCAL))
ETA = ETA/MAX(ONE,ABS(HSCAL)*HMXI*ETA)
NEWH = 1
NQWAIT = L
IF (NEWQ .LE. MAXORD) GO TO 50
C Rescale the history array for a change in H by a factor of ETA. ------
150 R = ONE
DO 180 J = 2, L
R = R*ETA
CALL DSCAL (N, R, YH(1,J), 1 )
180 CONTINUE
H = HSCAL*ETA
HSCAL = H
RC = RC*ETA
NQNYH = NQ*LDYH
C-----------------------------------------------------------------------
C This section computes the predicted values by effectively
C multiplying the YH array by the Pascal triangle matrix.
C DVSET is called to calculate all integration coefficients.
C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
C-----------------------------------------------------------------------
200 TN = TN + H
I1 = NQNYH + 1
DO 220 JB = 1, NQ
I1 = I1 - LDYH
DO 210 I = I1, NQNYH
210 YH1(I) = YH1(I) + YH1(I+LDYH)
220 CONTINUE
CALL DVSET
RL1 = ONE/EL(2)
RC = RC*(RL1/PRL1)
PRL1 = RL1
C
C Call the nonlinear system solver. ------------------------------------
C
CALL VNLS (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
1 F, JAC, PSOL, NFLAG, RPAR, IPAR)
C
IF (NFLAG .EQ. 0) GO TO 450
C-----------------------------------------------------------------------
C The VNLS routine failed to achieve convergence (NFLAG .NE. 0).
C The YH array is retracted to its values before prediction.
C The step size H is reduced and the step is retried, if possible.
C Otherwise, an error exit is taken.
C-----------------------------------------------------------------------
NCF = NCF + 1
NCFN = NCFN + 1
ETAMAX = ONE
TN = TOLD
I1 = NQNYH + 1
DO 430 JB = 1, NQ
I1 = I1 - LDYH
DO 420 I = I1, NQNYH
420 YH1(I) = YH1(I) - YH1(I+LDYH)
430 CONTINUE
IF (NFLAG .LT. -1) GO TO 680
IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 670
IF (NCF .EQ. MXNCF) GO TO 670
ETA = ETACF
ETA = MAX(ETA,HMIN/ABS(H))
NFLAG = -1
GO TO 150
C-----------------------------------------------------------------------
C The corrector has converged (NFLAG = 0). The local error test is
C made and control passes to statement 500 if it fails.
C-----------------------------------------------------------------------
450 CONTINUE
DSM = ACNRM/TQ(2)
IF (DSM .GT. ONE) GO TO 500
C-----------------------------------------------------------------------
C After a successful step, update the YH and TAU arrays and decrement
C NQWAIT. If NQWAIT is then 1 and NQ .lt. MAXORD, then ACOR is saved
C for use in a possible order increase on the next step.
C If ETAMAX = 1 (a failure occurred this step), keep NQWAIT .ge. 2.
C-----------------------------------------------------------------------
KFLAG = 0
NST = NST + 1
HU = H
NQU = NQ
DO 470 IBACK = 1, NQ
I = L - IBACK
470 TAU(I+1) = TAU(I)
TAU(1) = H
DO 480 J = 1, L
CALL DAXPY (N, EL(J), ACOR, 1, YH(1,J), 1 )
480 CONTINUE
NQWAIT = NQWAIT - 1
IF ((L .EQ. LMAX) .OR. (NQWAIT .NE. 1)) GO TO 490
CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1 )
CONP = TQ(5)
490 IF (ETAMAX .NE. ONE) GO TO 560
IF (NQWAIT .LT. 2) NQWAIT = 2
NEWQ = NQ
NEWH = 0
ETA = ONE
HNEW = H
GO TO 690
C-----------------------------------------------------------------------
C The error test failed. KFLAG keeps track of multiple failures.
C Restore TN and the YH array to their previous values, and prepare
C to try the step again. Compute the optimum step size for the
C same order. After repeated failures, H is forced to decrease
C more rapidly.
C-----------------------------------------------------------------------
500 KFLAG = KFLAG - 1
NETF = NETF + 1
NFLAG = -2
TN = TOLD
I1 = NQNYH + 1
DO 520 JB = 1, NQ
I1 = I1 - LDYH
DO 510 I = I1, NQNYH
510 YH1(I) = YH1(I) - YH1(I+LDYH)
520 CONTINUE
IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 660
ETAMAX = ONE
IF (KFLAG .LE. KFC) GO TO 530
C Compute ratio of new H to current H at the current order. ------------
FLOTL = REAL(L)
ETA = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
ETA = MAX(ETA,HMIN/ABS(H),ETAMIN)
IF ((KFLAG .LE. -2) .AND. (ETA .GT. ETAMXF)) ETA = ETAMXF
GO TO 150
C-----------------------------------------------------------------------
C Control reaches this section if 3 or more consecutive failures
C have occurred. It is assumed that the elements of the YH array
C have accumulated errors of the wrong order. The order is reduced
C by one, if possible. Then H is reduced by a factor of 0.1 and
C the step is retried. After a total of 7 consecutive failures,
C an exit is taken with KFLAG = -1.
C-----------------------------------------------------------------------
530 IF (KFLAG .EQ. KFH) GO TO 660
IF (NQ .EQ. 1) GO TO 540
ETA = MAX(ETAMIN,HMIN/ABS(H))
CALL DVJUST (YH, LDYH, -1)
L = NQ
NQ = NQ - 1
NQWAIT = L
GO TO 150
540 ETA = MAX(ETAMIN,HMIN/ABS(H))
H = H*ETA
HSCAL = H
TAU(1) = H
CALL F (N, TN, Y, SAVF, RPAR, IPAR)
NFE = NFE + 1
DO 550 I = 1, N
550 YH(I,2) = H*SAVF(I)
NQWAIT = 10
GO TO 200
C-----------------------------------------------------------------------
C If NQWAIT = 0, an increase or decrease in order by one is considered.
C Factors ETAQ, ETAQM1, ETAQP1 are computed by which H could
C be multiplied at order q, q-1, or q+1, respectively.
C The largest of these is determined, and the new order and
C step size set accordingly.
C A change of H or NQ is made only if H increases by at least a
C factor of THRESH. If an order change is considered and rejected,
C then NQWAIT is set to 2 (reconsider it after 2 steps).
C-----------------------------------------------------------------------
C Compute ratio of new H to current H at the current order. ------------
560 FLOTL = REAL(L)
ETAQ = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
IF (NQWAIT .NE. 0) GO TO 600
NQWAIT = 2
ETAQM1 = ZERO
IF (NQ .EQ. 1) GO TO 570
C Compute ratio of new H to current H at the current order less one. ---
DDN = DVNORM (N, YH(1,L), EWT)/TQ(1)
ETAQM1 = ONE/((BIAS1*DDN)**(ONE/(FLOTL - ONE)) + ADDON)
570 ETAQP1 = ZERO
IF (L .EQ. LMAX) GO TO 580
C Compute ratio of new H to current H at current order plus one. -------
CNQUOT = (TQ(5)/CONP)*(H/TAU(2))**L
DO 575 I = 1, N
575 SAVF(I) = ACOR(I) - CNQUOT*YH(I,LMAX)
DUP = DVNORM (N, SAVF, EWT)/TQ(3)
ETAQP1 = ONE/((BIAS3*DUP)**(ONE/(FLOTL + ONE)) + ADDON)
580 IF (ETAQ .GE. ETAQP1) GO TO 590
IF (ETAQP1 .GT. ETAQM1) GO TO 620
GO TO 610
590 IF (ETAQ .LT. ETAQM1) GO TO 610
600 ETA = ETAQ
NEWQ = NQ
GO TO 630
610 ETA = ETAQM1
NEWQ = NQ - 1
GO TO 630
620 ETA = ETAQP1
NEWQ = NQ + 1
CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1)
C Test tentative new H against THRESH, ETAMAX, and HMXI, then exit. ----
630 IF (ETA .LT. THRESH .OR. ETAMAX .EQ. ONE) GO TO 640
ETA = MIN(ETA,ETAMAX)
ETA = ETA/MAX(ONE,ABS(H)*HMXI*ETA)
NEWH = 1
HNEW = H*ETA
GO TO 690
640 NEWQ = NQ
NEWH = 0
ETA = ONE
HNEW = H
GO TO 690
C-----------------------------------------------------------------------
C All returns are made through this section.
C On a successful return, ETAMAX is reset and ACOR is scaled.
C-----------------------------------------------------------------------
660 KFLAG = -1
GO TO 720
670 KFLAG = -2
GO TO 720
680 IF (NFLAG .EQ. -2) KFLAG = -3
IF (NFLAG .EQ. -3) KFLAG = -4
GO TO 720
690 ETAMAX = ETAMX3
IF (NST .LE. 10) ETAMAX = ETAMX2
700 R = ONE/TQ(2)
CALL DSCAL (N, R, ACOR, 1)
720 JSTART = 1
RETURN
C----------------------- End of Subroutine DVSTEP ----------------------
END
*DECK DVSET
SUBROUTINE DVSET
C-----------------------------------------------------------------------
C Call sequence communication.. None
C COMMON block variables accessed..
C /DVOD01/ -- EL(13), H, TAU(13), TQ(5), L(= NQ + 1),
C METH, NQ, NQWAIT
C
C Subroutines called by DVSET.. None
C Function routines called by DVSET.. None
C-----------------------------------------------------------------------
C DVSET is called by DVSTEP and sets coefficients for use there.
C
C For each order NQ, the coefficients in EL are calculated by use of
C the generating polynomial lambda(x), with coefficients EL(i).
C lambda(x) = EL(1) + EL(2)*x + ... + EL(NQ+1)*(x**NQ).
C For the backward differentiation formulas,
C NQ-1
C lambda(x) = (1 + x/xi*(NQ)) * product (1 + x/xi(i) ) .
C i = 1
C For the Adams formulas,
C NQ-1
C (d/dx) lambda(x) = c * product (1 + x/xi(i) ) ,
C i = 1
C lambda(-1) = 0, lambda(0) = 1,
C where c is a normalization constant.
C In both cases, xi(i) is defined by
C H*xi(i) = t sub n - t sub (n-i)
C = H + TAU(1) + TAU(2) + ... TAU(i-1).
C
C
C In addition to variables described previously, communication
C with DVSET uses the following..
C TAU = A vector of length 13 containing the past NQ values
C of H.
C EL = A vector of length 13 in which vset stores the
C coefficients for the corrector formula.
C TQ = A vector of length 5 in which vset stores constants
C used for the convergence test, the error test, and the
C selection of H at a new order.
C METH = The basic method indicator.
C NQ = The current order.
C L = NQ + 1, the length of the vector stored in EL, and
C the number of columns of the YH array being used.
C NQWAIT = A counter controlling the frequency of order changes.
C An order change is about to be considered if NQWAIT = 1.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION AHATN0, ALPH0, CNQM1, CORTES, CSUM, ELP, EM,
1 EM0, FLOTI, FLOTL, FLOTNQ, HSUM, ONE, RXI, RXIS, S, SIX,
2 T1, T2, T3, T4, T5, T6, TWO, XI, ZERO
INTEGER I, IBACK, J, JP1, NQM1, NQM2
C
DIMENSION EM(13)
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE CORTES, ONE, SIX, TWO, ZERO
C
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
C
DATA CORTES /0.1D0/
DATA ONE /1.0D0/, SIX /6.0D0/, TWO /2.0D0/, ZERO /0.0D0/
C
FLOTL = REAL(L)
NQM1 = NQ - 1
NQM2 = NQ - 2
GO TO (100, 200), METH
C
C Set coefficients for Adams methods. ----------------------------------
100 IF (NQ .NE. 1) GO TO 110
EL(1) = ONE
EL(2) = ONE
TQ(1) = ONE
TQ(2) = TWO
TQ(3) = SIX*TQ(2)
TQ(5) = ONE
GO TO 300
110 HSUM = H
EM(1) = ONE
FLOTNQ = FLOTL - ONE
DO 115 I = 2, L
115 EM(I) = ZERO
DO 150 J = 1, NQM1
IF ((J .NE. NQM1) .OR. (NQWAIT .NE. 1)) GO TO 130
S = ONE
CSUM = ZERO
DO 120 I = 1, NQM1
CSUM = CSUM + S*EM(I)/REAL(I+1)
120 S = -S
TQ(1) = EM(NQM1)/(FLOTNQ*CSUM)
130 RXI = H/HSUM
DO 140 IBACK = 1, J
I = (J + 2) - IBACK
140 EM(I) = EM(I) + EM(I-1)*RXI
HSUM = HSUM + TAU(J)
150 CONTINUE
C Compute integral from -1 to 0 of polynomial and of x times it. -------
S = ONE
EM0 = ZERO
CSUM = ZERO
DO 160 I = 1, NQ
FLOTI = REAL(I)
EM0 = EM0 + S*EM(I)/FLOTI
CSUM = CSUM + S*EM(I)/(FLOTI+ONE)
160 S = -S
C In EL, form coefficients of normalized integrated polynomial. --------
S = ONE/EM0
EL(1) = ONE
DO 170 I = 1, NQ
170 EL(I+1) = S*EM(I)/REAL(I)
XI = HSUM/H
TQ(2) = XI*EM0/CSUM
TQ(5) = XI/EL(L)
IF (NQWAIT .NE. 1) GO TO 300
C For higher order control constant, multiply polynomial by 1+x/xi(q). -
RXI = ONE/XI
DO 180 IBACK = 1, NQ
I = (L + 1) - IBACK
180 EM(I) = EM(I) + EM(I-1)*RXI
C Compute integral of polynomial. --------------------------------------
S = ONE
CSUM = ZERO
DO 190 I = 1, L
CSUM = CSUM + S*EM(I)/REAL(I+1)
190 S = -S
TQ(3) = FLOTL*EM0/CSUM
GO TO 300
C
C Set coefficients for BDF methods. ------------------------------------
200 DO 210 I = 3, L
210 EL(I) = ZERO
EL(1) = ONE
EL(2) = ONE
ALPH0 = -ONE
AHATN0 = -ONE
HSUM = H
RXI = ONE
RXIS = ONE
IF (NQ .EQ. 1) GO TO 240
DO 230 J = 1, NQM2
C In EL, construct coefficients of (1+x/xi(1))*...*(1+x/xi(j+1)). ------
HSUM = HSUM + TAU(J)
RXI = H/HSUM
JP1 = J + 1
ALPH0 = ALPH0 - ONE/REAL(JP1)
DO 220 IBACK = 1, JP1
I = (J + 3) - IBACK
220 EL(I) = EL(I) + EL(I-1)*RXI
230 CONTINUE
ALPH0 = ALPH0 - ONE/REAL(NQ)
RXIS = -EL(2) - ALPH0
HSUM = HSUM + TAU(NQM1)
RXI = H/HSUM
AHATN0 = -EL(2) - RXI
DO 235 IBACK = 1, NQ
I = (NQ + 2) - IBACK
235 EL(I) = EL(I) + EL(I-1)*RXIS
240 T1 = ONE - AHATN0 + ALPH0
T2 = ONE + REAL(NQ)*T1
TQ(2) = ABS(ALPH0*T2/T1)
TQ(5) = ABS(T2/(EL(L)*RXI/RXIS))
IF (NQWAIT .NE. 1) GO TO 300
CNQM1 = RXIS/EL(L)
T3 = ALPH0 + ONE/REAL(NQ)
T4 = AHATN0 + RXI
ELP = T3/(ONE - T4 + T3)
TQ(1) = ABS(ELP/CNQM1)
HSUM = HSUM + TAU(NQ)
RXI = H/HSUM
T5 = ALPH0 - ONE/REAL(NQ+1)
T6 = AHATN0 - RXI
ELP = T2/(ONE - T6 + T5)
TQ(3) = ABS(ELP*RXI*(FLOTL + ONE)*T5)
300 TQ(4) = CORTES*TQ(2)
RETURN
C----------------------- End of Subroutine DVSET -----------------------
END
*DECK DVJUST
SUBROUTINE DVJUST (YH, LDYH, IORD)
DOUBLE PRECISION YH
INTEGER LDYH, IORD
DIMENSION YH(LDYH,*)
C-----------------------------------------------------------------------
C Call sequence input -- YH, LDYH, IORD
C Call sequence output -- YH
C COMMON block input -- NQ, METH, LMAX, HSCAL, TAU(13), N
C COMMON block variables accessed..
C /DVOD01/ -- HSCAL, TAU(13), LMAX, METH, N, NQ,
C
C Subroutines called by DVJUST.. DAXPY
C Function routines called by DVJUST.. None
C-----------------------------------------------------------------------
C This subroutine adjusts the YH array on reduction of order,
C and also when the order is increased for the stiff option (METH = 2).
C Communication with DVJUST uses the following..
C IORD = An integer flag used when METH = 2 to indicate an order
C increase (IORD = +1) or an order decrease (IORD = -1).
C HSCAL = Step size H used in scaling of Nordsieck array YH.
C (If IORD = +1, DVJUST assumes that HSCAL = TAU(1).)
C See References 1 and 2 for details.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION ALPH0, ALPH1, HSUM, ONE, PROD, T1, XI,XIOLD, ZERO
INTEGER I, IBACK, J, JP1, LP1, NQM1, NQM2, NQP1
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE ONE, ZERO
C
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
C
DATA ONE /1.0D0/, ZERO /0.0D0/
C
IF ((NQ .EQ. 2) .AND. (IORD .NE. 1)) RETURN
NQM1 = NQ - 1
NQM2 = NQ - 2
GO TO (100, 200), METH
C-----------------------------------------------------------------------
C Nonstiff option...
C Check to see if the order is being increased or decreased.
C-----------------------------------------------------------------------
100 CONTINUE
IF (IORD .EQ. 1) GO TO 180
C Order decrease. ------------------------------------------------------
DO 110 J = 1, LMAX
110 EL(J) = ZERO
EL(2) = ONE
HSUM = ZERO
DO 130 J = 1, NQM2
C Construct coefficients of x*(x+xi(1))*...*(x+xi(j)). -----------------
HSUM = HSUM + TAU(J)
XI = HSUM/HSCAL
JP1 = J + 1
DO 120 IBACK = 1, JP1
I = (J + 3) - IBACK
120 EL(I) = EL(I)*XI + EL(I-1)
130 CONTINUE
C Construct coefficients of integrated polynomial. ---------------------
DO 140 J = 2, NQM1
140 EL(J+1) = REAL(NQ)*EL(J)/REAL(J)
C Subtract correction terms from YH array. -----------------------------
DO 170 J = 3, NQ
DO 160 I = 1, N
160 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
170 CONTINUE
RETURN
C Order increase. ------------------------------------------------------
C Zero out next column in YH array. ------------------------------------
180 CONTINUE
LP1 = L + 1
DO 190 I = 1, N
190 YH(I,LP1) = ZERO
RETURN
C-----------------------------------------------------------------------
C Stiff option...
C Check to see if the order is being increased or decreased.
C-----------------------------------------------------------------------
200 CONTINUE
IF (IORD .EQ. 1) GO TO 300
C Order decrease. ------------------------------------------------------
DO 210 J = 1, LMAX
210 EL(J) = ZERO
EL(3) = ONE
HSUM = ZERO
DO 230 J = 1,NQM2
C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
HSUM = HSUM + TAU(J)
XI = HSUM/HSCAL
JP1 = J + 1
DO 220 IBACK = 1, JP1
I = (J + 4) - IBACK
220 EL(I) = EL(I)*XI + EL(I-1)
230 CONTINUE
C Subtract correction terms from YH array. -----------------------------
DO 250 J = 3,NQ
DO 240 I = 1, N
240 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
250 CONTINUE
RETURN
C Order increase. ------------------------------------------------------
300 DO 310 J = 1, LMAX
310 EL(J) = ZERO
EL(3) = ONE
ALPH0 = -ONE
ALPH1 = ONE
PROD = ONE
XIOLD = ONE
HSUM = HSCAL
IF (NQ .EQ. 1) GO TO 340
DO 330 J = 1, NQM1
C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
JP1 = J + 1
HSUM = HSUM + TAU(JP1)
XI = HSUM/HSCAL
PROD = PROD*XI
ALPH0 = ALPH0 - ONE/REAL(JP1)
ALPH1 = ALPH1 + ONE/XI
DO 320 IBACK = 1, JP1
I = (J + 4) - IBACK
320 EL(I) = EL(I)*XIOLD + EL(I-1)
XIOLD = XI
330 CONTINUE
340 CONTINUE
T1 = (-ALPH0 - ALPH1)/PROD
C Load column L + 1 in YH array. ---------------------------------------
LP1 = L + 1
DO 350 I = 1, N
350 YH(I,LP1) = T1*YH(I,LMAX)
C Add correction terms to YH array. ------------------------------------
NQP1 = NQ + 1
DO 370 J = 3, NQP1
CALL DAXPY (N, EL(J), YH(1,LP1), 1, YH(1,J), 1 )
370 CONTINUE
RETURN
C----------------------- End of Subroutine DVJUST ----------------------
END
*DECK DVNLSD
SUBROUTINE DVNLSD (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
1 F, JAC, PDUM, NFLAG, RPAR, IPAR)
EXTERNAL F, JAC, PDUM
DOUBLE PRECISION Y, YH, VSAV, SAVF, EWT, ACOR, WM, RPAR
INTEGER LDYH, IWM, NFLAG, IPAR
DIMENSION Y(*), YH(LDYH,*), VSAV(*), SAVF(*), EWT(*), ACOR(*),
1 IWM(*), WM(*), RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C Call sequence input -- Y, YH, LDYH, SAVF, EWT, ACOR, IWM, WM,
C F, JAC, NFLAG, RPAR, IPAR
C Call sequence output -- YH, ACOR, WM, IWM, NFLAG
C COMMON block variables accessed..
C /DVOD01/ ACNRM, CRATE, DRC, H, RC, RL1, TQ(5), TN, ICF,
C JCUR, METH, MITER, N, NSLP
C /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Subroutines called by DVNLSD.. F, DAXPY, DCOPY, DSCAL, DVJAC, DVSOL
C Function routines called by DVNLSD.. DVNORM
C-----------------------------------------------------------------------
C Subroutine DVNLSD is a nonlinear system solver, which uses functional
C iteration or a chord (modified Newton) method. For the chord method
C direct linear algebraic system solvers are used. Subroutine DVNLSD
C then handles the corrector phase of this integration package.
C
C Communication with DVNLSD is done with the following variables. (For
C more details, please see the comments in the driver subroutine.)
C
C Y = The dependent variable, a vector of length N, input.
C YH = The Nordsieck (Taylor) array, LDYH by LMAX, input
C and output. On input, it contains predicted values.
C LDYH = A constant .ge. N, the first dimension of YH, input.
C VSAV = Unused work array.
C SAVF = A work array of length N.
C EWT = An error weight vector of length N, input.
C ACOR = A work array of length N, used for the accumulated
C corrections to the predicted y vector.
C WM,IWM = Real and integer work arrays associated with matrix
C operations in chord iteration (MITER .ne. 0).
C F = Dummy name for user supplied routine for f.
C JAC = Dummy name for user supplied Jacobian routine.
C PDUM = Unused dummy subroutine name. Included for uniformity
C over collection of integrators.
C NFLAG = Input/output flag, with values and meanings as follows..
C INPUT
C 0 first call for this time step.
C -1 convergence failure in previous call to DVNLSD.
C -2 error test failure in DVSTEP.
C OUTPUT
C 0 successful completion of nonlinear solver.
C -1 convergence failure or singular matrix.
C -2 unrecoverable error in matrix preprocessing
C (cannot occur here).
C -3 unrecoverable error in solution (cannot occur
C here).
C RPAR, IPAR = Dummy names for user's real and integer work arrays.
C
C IPUP = Own variable flag with values and meanings as follows..
C 0, do not update the Newton matrix.
C MITER .ne. 0, update Newton matrix, because it is the
C initial step, order was changed, the error
C test failed, or an update is indicated by
C the scalar RC or step counter NST.
C
C For more details, see comments in driver subroutine.
C-----------------------------------------------------------------------
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for labeled COMMON block DVOD02 --------------------
C
DOUBLE PRECISION HU
INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION CCMAX, CRDOWN, CSCALE, DCON, DEL, DELP, ONE,
1 RDIV, TWO, ZERO
INTEGER I, IERPJ, IERSL, M, MAXCOR, MSBP
C
C Type declaration for function subroutines called ---------------------
C
DOUBLE PRECISION DVNORM
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE CCMAX, CRDOWN, MAXCOR, MSBP, RDIV, ONE, TWO, ZERO
C
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
DATA CCMAX /0.3D0/, CRDOWN /0.3D0/, MAXCOR /3/, MSBP /20/,
1 RDIV /2.0D0/
DATA ONE /1.0D0/, TWO /2.0D0/, ZERO /0.0D0/
C-----------------------------------------------------------------------
C On the first step, on a change of method order, or after a
C nonlinear convergence failure with NFLAG = -2, set IPUP = MITER
C to force a Jacobian update when MITER .ne. 0.
C-----------------------------------------------------------------------
IF (JSTART .EQ. 0) NSLP = 0
IF (NFLAG .EQ. 0) ICF = 0
IF (NFLAG .EQ. -2) IPUP = MITER
IF ( (JSTART .EQ. 0) .OR. (JSTART .EQ. -1) ) IPUP = MITER
C If this is functional iteration, set CRATE .eq. 1 and drop to 220
IF (MITER .EQ. 0) THEN
CRATE = ONE
GO TO 220
ENDIF
C-----------------------------------------------------------------------
C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
C When RC differs from 1 by more than CCMAX, IPUP is set to MITER
C to force DVJAC to be called, if a Jacobian is involved.
C In any case, DVJAC is called at least every MSBP steps.
C-----------------------------------------------------------------------
DRC = ABS(RC-ONE)
IF (DRC .GT. CCMAX .OR. NST .GE. NSLP+MSBP) IPUP = MITER
C-----------------------------------------------------------------------
C Up to MAXCOR corrector iterations are taken. A convergence test is
C made on the r.m.s. norm of each correction, weighted by the error
C weight vector EWT. The sum of the corrections is accumulated in the
C vector ACOR(i). The YH array is not altered in the corrector loop.
C-----------------------------------------------------------------------
220 M = 0
DELP = ZERO
CALL DCOPY (N, YH(1,1), 1, Y, 1 )
CALL F (N, TN, Y, SAVF, RPAR, IPAR)
NFE = NFE + 1
IF (IPUP .LE. 0) GO TO 250
C-----------------------------------------------------------------------
C If indicated, the matrix P = I - h*rl1*J is reevaluated and
C preprocessed before starting the corrector iteration. IPUP is set
C to 0 as an indicator that this has been done.
C-----------------------------------------------------------------------
CALL DVJAC (Y, YH, LDYH, EWT, ACOR, SAVF, WM, IWM, F, JAC, IERPJ,
1 RPAR, IPAR)
IPUP = 0
RC = ONE
DRC = ZERO
CRATE = ONE
NSLP = NST
C If matrix is singular, take error return to force cut in step size. --
IF (IERPJ .NE. 0) GO TO 430
250 DO 260 I = 1,N
260 ACOR(I) = ZERO
C This is a looping point for the corrector iteration. -----------------
270 IF (MITER .NE. 0) GO TO 350
C-----------------------------------------------------------------------
C In the case of functional iteration, update Y directly from
C the result of the last function evaluation.
C-----------------------------------------------------------------------
DO 280 I = 1,N
280 SAVF(I) = RL1*(H*SAVF(I) - YH(I,2))
DO 290 I = 1,N
290 Y(I) = SAVF(I) - ACOR(I)
DEL = DVNORM (N, Y, EWT)
DO 300 I = 1,N
300 Y(I) = YH(I,1) + SAVF(I)
CALL DCOPY (N, SAVF, 1, ACOR, 1)
GO TO 400
C-----------------------------------------------------------------------
C In the case of the chord method, compute the corrector error,
C and solve the linear system with that as right-hand side and
C P as coefficient matrix. The correction is scaled by the factor
C 2/(1+RC) to account for changes in h*rl1 since the last DVJAC call.
C-----------------------------------------------------------------------
350 DO 360 I = 1,N
360 Y(I) = (RL1*H)*SAVF(I) - (RL1*YH(I,2) + ACOR(I))
CALL DVSOL (WM, IWM, Y, IERSL)
NNI = NNI + 1
IF (IERSL .GT. 0) GO TO 410
IF (METH .EQ. 2 .AND. RC .NE. ONE) THEN
CSCALE = TWO/(ONE + RC)
CALL DSCAL (N, CSCALE, Y, 1)
ENDIF
DEL = DVNORM (N, Y, EWT)
CALL DAXPY (N, ONE, Y, 1, ACOR, 1)
DO 380 I = 1,N
380 Y(I) = YH(I,1) + ACOR(I)
C-----------------------------------------------------------------------
C Test for convergence. If M .gt. 0, an estimate of the convergence
C rate constant is stored in CRATE, and this is used in the test.
C-----------------------------------------------------------------------
400 IF (M .NE. 0) CRATE = MAX(CRDOWN*CRATE,DEL/DELP)
DCON = DEL*MIN(ONE,CRATE)/TQ(4)
IF (DCON .LE. ONE) GO TO 450
M = M + 1
IF (M .EQ. MAXCOR) GO TO 410
IF (M .GE. 2 .AND. DEL .GT. RDIV*DELP) GO TO 410
DELP = DEL
CALL F (N, TN, Y, SAVF, RPAR, IPAR)
NFE = NFE + 1
GO TO 270
C
410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
ICF = 1
IPUP = MITER
GO TO 220
C
430 CONTINUE
NFLAG = -1
ICF = 2
IPUP = MITER
RETURN
C
C Return for successful step. ------------------------------------------
450 NFLAG = 0
JCUR = 0
ICF = 0
IF (M .EQ. 0) ACNRM = DEL
IF (M .GT. 0) ACNRM = DVNORM (N, ACOR, EWT)
RETURN
C----------------------- End of Subroutine DVNLSD ----------------------
END
*DECK DVJAC
SUBROUTINE DVJAC (Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, F, JAC,
1 IERPJ, RPAR, IPAR)
EXTERNAL F, JAC
DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM, RPAR
INTEGER LDYH, IWM, IERPJ, IPAR
DIMENSION Y(*), YH(LDYH,*), EWT(*), FTEM(*), SAVF(*),
1 WM(*), IWM(*), RPAR(*), IPAR(*)
C-----------------------------------------------------------------------
C Call sequence input -- Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM,
C F, JAC, RPAR, IPAR
C Call sequence output -- WM, IWM, IERPJ
C COMMON block variables accessed..
C /DVOD01/ CCMXJ, DRC, H, RL1, TN, UROUND, ICF, JCUR, LOCJS,
C MITER, MSBJ, N, NSLJ
C /DVOD02/ NFE, NST, NJE, NLU
C
C Subroutines called by DVJAC.. F, JAC, DACOPY, DCOPY, DGBTRF, DGETRF,
C DSCAL
C Function routines called by DVJAC.. DVNORM
C-----------------------------------------------------------------------
C DVJAC is called by DVNLSD to compute and process the matrix
C P = I - h*rl1*J , where J is an approximation to the Jacobian.
C Here J is computed by the user-supplied routine JAC if
C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5.
C If MITER = 3, a diagonal approximation to J is used.
C If JSV = -1, J is computed from scratch in all cases.
C If JSV = 1 and MITER = 1, 2, 4, or 5, and if the saved value of J is
C considered acceptable, then P is constructed from the saved J.
C J is stored in wm and replaced by P. If MITER .ne. 3, P is then
C subjected to LU decomposition in preparation for later solution
C of linear systems with P as coefficient matrix. This is done
C by DGETRF if MITER = 1 or 2, and by DGBTRF if MITER = 4 or 5.
C
C Communication with DVJAC is done with the following variables. (For
C more details, please see the comments in the driver subroutine.)
C Y = Vector containing predicted values on entry.
C YH = The Nordsieck array, an LDYH by LMAX array, input.
C LDYH = A constant .ge. N, the first dimension of YH, input.
C EWT = An error weight vector of length N.
C SAVF = Array containing f evaluated at predicted y, input.
C WM = Real work space for matrices. In the output, it containS
C the inverse diagonal matrix if MITER = 3 and the LU
C decomposition of P if MITER is 1, 2 , 4, or 5.
C Storage of matrix elements starts at WM(3).
C Storage of the saved Jacobian starts at WM(LOCJS).
C WM also contains the following matrix-related data..
C WM(1) = SQRT(UROUND), used in numerical Jacobian step.
C WM(2) = H*RL1, saved for later use if MITER = 3.
C IWM = Integer work space containing pivot information,
C starting at IWM(31), if MITER is 1, 2, 4, or 5.
C IWM also contains band parameters ML = IWM(1) and
C MU = IWM(2) if MITER is 4 or 5.
C F = Dummy name for the user supplied subroutine for f.
C JAC = Dummy name for the user supplied Jacobian subroutine.
C RPAR, IPAR = Dummy names for user's real and integer work arrays.
C RL1 = 1/EL(2) (input).
C IERPJ = Output error flag, = 0 if no trouble, 1 if the P
C matrix is found to be singular.
C JCUR = Output flag to indicate whether the Jacobian matrix
C (or approximation) is now current.
C JCUR = 0 means J is not current.
C JCUR = 1 means J is current.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for labeled COMMON block DVOD02 --------------------
C
DOUBLE PRECISION HU
INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
C Type declarations for local variables --------------------------------
C
DOUBLE PRECISION CON, DI, FAC, HRL1, ONE, PT1, R, R0, SRUR, THOU,
1 YI, YJ, YJJ, ZERO
INTEGER I, I1, I2, IER, II, J, J1, JJ, JOK, LENP, MBA, MBAND,
1 MEB1, MEBAND, ML, ML3, MU, NP1
C
C Type declaration for function subroutines called ---------------------
C
DOUBLE PRECISION DVNORM
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this subroutine.
C-----------------------------------------------------------------------
SAVE ONE, PT1, THOU, ZERO
C-----------------------------------------------------------------------
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
C
DATA ONE /1.0D0/, THOU /1000.0D0/, ZERO /0.0D0/, PT1 /0.1D0/
C
IERPJ = 0
HRL1 = H*RL1
C See whether J should be evaluated (JOK = -1) or not (JOK = 1). -------
JOK = JSV
IF (JSV .EQ. 1) THEN
IF (NST .EQ. 0 .OR. NST .GT. NSLJ+MSBJ) JOK = -1
IF (ICF .EQ. 1 .AND. DRC .LT. CCMXJ) JOK = -1
IF (ICF .EQ. 2) JOK = -1
ENDIF
C End of setting JOK. --------------------------------------------------
C
IF (JOK .EQ. -1 .AND. MITER .EQ. 1) THEN
C If JOK = -1 and MITER = 1, call JAC to evaluate Jacobian. ------------
NJE = NJE + 1
NSLJ = NST
JCUR = 1
LENP = N*N
DO 110 I = 1,LENP
110 WM(I+2) = ZERO
CALL JAC (N, TN, Y, 0, 0, WM(3), N, RPAR, IPAR)
IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
ENDIF
C
IF (JOK .EQ. -1 .AND. MITER .EQ. 2) THEN
C If MITER = 2, make N calls to F to approximate the Jacobian. ---------
NJE = NJE + 1
NSLJ = NST
JCUR = 1
FAC = DVNORM (N, SAVF, EWT)
R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
IF (R0 .EQ. ZERO) R0 = ONE
SRUR = WM(1)
J1 = 2
DO 230 J = 1,N
YJ = Y(J)
R = MAX(SRUR*ABS(YJ),R0/EWT(J))
Y(J) = Y(J) + R
FAC = ONE/R
CALL F (N, TN, Y, FTEM, RPAR, IPAR)
DO 220 I = 1,N
220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
Y(J) = YJ
J1 = J1 + N
230 CONTINUE
NFE = NFE + N
LENP = N*N
IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
ENDIF
C
IF (JOK .EQ. 1 .AND. (MITER .EQ. 1 .OR. MITER .EQ. 2)) THEN
JCUR = 0
LENP = N*N
CALL DCOPY (LENP, WM(LOCJS), 1, WM(3), 1)
ENDIF
C
IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
C Multiply Jacobian by scalar, add identity, and do LU decomposition. --
CON = -HRL1
CALL DSCAL (LENP, CON, WM(3), 1)
J = 3
NP1 = N + 1
DO 250 I = 1,N
WM(J) = WM(J) + ONE
250 J = J + NP1
NLU = NLU + 1
c Replaced LINPACK dgefa with LAPACK dgetrf
c CALL DGEFA (WM(3), N, N, IWM(31), IER)
CALL DGETRF (N, N, WM(3), N, IWM(31), IER)
IF (IER .NE. 0) IERPJ = 1
RETURN
ENDIF
C End of code block for MITER = 1 or 2. --------------------------------
C
IF (MITER .EQ. 3) THEN
C If MITER = 3, construct a diagonal approximation to J and P. ---------
NJE = NJE + 1
JCUR = 1
WM(2) = HRL1
R = RL1*PT1
DO 310 I = 1,N
310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
CALL F (N, TN, Y, WM(3), RPAR, IPAR)
NFE = NFE + 1
DO 320 I = 1,N
R0 = H*SAVF(I) - YH(I,2)
DI = PT1*R0 - H*(WM(I+2) - SAVF(I))
WM(I+2) = ONE
IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320
IF (ABS(DI) .EQ. ZERO) GO TO 330
WM(I+2) = PT1*R0/DI
320 CONTINUE
RETURN
330 IERPJ = 1
RETURN
ENDIF
C End of code block for MITER = 3. -------------------------------------
C
C Set constants for MITER = 4 or 5. ------------------------------------
ML = IWM(1)
MU = IWM(2)
ML3 = ML + 3
MBAND = ML + MU + 1
MEBAND = MBAND + ML
LENP = MEBAND*N
C
IF (JOK .EQ. -1 .AND. MITER .EQ. 4) THEN
C If JOK = -1 and MITER = 4, call JAC to evaluate Jacobian. ------------
NJE = NJE + 1
NSLJ = NST
JCUR = 1
DO 410 I = 1,LENP
410 WM(I+2) = ZERO
CALL JAC (N, TN, Y, ML, MU, WM(ML3), MEBAND, RPAR, IPAR)
IF (JSV .EQ. 1)
1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
ENDIF
C
IF (JOK .EQ. -1 .AND. MITER .EQ. 5) THEN
C If MITER = 5, make ML+MU+1 calls to F to approximate the Jacobian. ---
NJE = NJE + 1
NSLJ = NST
JCUR = 1
MBA = MIN(MBAND,N)
MEB1 = MEBAND - 1
SRUR = WM(1)
FAC = DVNORM (N, SAVF, EWT)
R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
IF (R0 .EQ. ZERO) R0 = ONE
DO 560 J = 1,MBA
DO 530 I = J,N,MBAND
YI = Y(I)
R = MAX(SRUR*ABS(YI),R0/EWT(I))
530 Y(I) = Y(I) + R
CALL F (N, TN, Y, FTEM, RPAR, IPAR)
DO 550 JJ = J,N,MBAND
Y(JJ) = YH(JJ,1)
YJJ = Y(JJ)
R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
FAC = ONE/R
I1 = MAX(JJ-MU,1)
I2 = MIN(JJ+ML,N)
II = JJ*MEB1 - ML + 2
DO 540 I = I1,I2
540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
550 CONTINUE
560 CONTINUE
NFE = NFE + MBA
IF (JSV .EQ. 1)
1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
ENDIF
C
IF (JOK .EQ. 1) THEN
JCUR = 0
CALL DACOPY (MBAND, N, WM(LOCJS), MBAND, WM(ML3), MEBAND)
ENDIF
C
C Multiply Jacobian by scalar, add identity, and do LU decomposition.
CON = -HRL1
CALL DSCAL (LENP, CON, WM(3), 1 )
II = MBAND + 2
DO 580 I = 1,N
WM(II) = WM(II) + ONE
580 II = II + MEBAND
NLU = NLU + 1
c Replaced LINPACK dgbfa with LAPACK dgbtrf
c CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(31), IER)
CALL DGBTRF (N, N, ML, MU, WM(3), MEBAND, IWM(31), IER)
IF (IER .NE. 0) IERPJ = 1
RETURN
C End of code block for MITER = 4 or 5. --------------------------------
C
C----------------------- End of Subroutine DVJAC -----------------------
END
*DECK DACOPY
SUBROUTINE DACOPY (NROW, NCOL, A, NROWA, B, NROWB)
DOUBLE PRECISION A, B
INTEGER NROW, NCOL, NROWA, NROWB
DIMENSION A(NROWA,NCOL), B(NROWB,NCOL)
C-----------------------------------------------------------------------
C Call sequence input -- NROW, NCOL, A, NROWA, NROWB
C Call sequence output -- B
C COMMON block variables accessed -- None
C
C Subroutines called by DACOPY.. DCOPY
C Function routines called by DACOPY.. None
C-----------------------------------------------------------------------
C This routine copies one rectangular array, A, to another, B,
C where A and B may have different row dimensions, NROWA and NROWB.
C The data copied consists of NROW rows and NCOL columns.
C-----------------------------------------------------------------------
INTEGER IC
C
DO 20 IC = 1,NCOL
CALL DCOPY (NROW, A(1,IC), 1, B(1,IC), 1)
20 CONTINUE
C
RETURN
C----------------------- End of Subroutine DACOPY ----------------------
END
*DECK DVSOL
SUBROUTINE DVSOL (WM, IWM, X, IERSL)
DOUBLE PRECISION WM, X
INTEGER IWM, IERSL
DIMENSION WM(*), IWM(*), X(*)
C-----------------------------------------------------------------------
C Call sequence input -- WM, IWM, X
C Call sequence output -- X, IERSL
C COMMON block variables accessed..
C /DVOD01/ -- H, RL1, MITER, N
C
C Subroutines called by DVSOL.. DGETRS, DGBTRS
C Function routines called by DVSOL.. None
C-----------------------------------------------------------------------
C This routine manages the solution of the linear system arising from
C a chord iteration. It is called if MITER .ne. 0.
C If MITER is 1 or 2, it calls DGETRS to accomplish this.
C If MITER = 3 it updates the coefficient H*RL1 in the diagonal
C matrix, and then computes the solution.
C If MITER is 4 or 5, it calls DGBTRS.
C Communication with DVSOL uses the following variables..
C WM = Real work space containing the inverse diagonal matrix if
C MITER = 3 and the LU decomposition of the matrix otherwise.
C Storage of matrix elements starts at WM(3).
C WM also contains the following matrix-related data..
C WM(1) = SQRT(UROUND) (not used here),
C WM(2) = HRL1, the previous value of H*RL1, used if MITER = 3.
C IWM = Integer work space containing pivot information, starting at
C IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band
C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
C X = The right-hand side vector on input, and the solution vector
C on output, of length N.
C IERSL = Output flag. IERSL = 0 if no trouble occurred.
C IERSL = 1 if a singular matrix arose with MITER = 3.
C-----------------------------------------------------------------------
C
C Type declarations for labeled COMMON block DVOD01 --------------------
C
DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU, TQ, TN, UROUND
INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
4 NSLP, NYH
C
C Type declarations for local variables --------------------------------
C
INTEGER I, MEBAND, ML, MU
DOUBLE PRECISION DI, HRL1, ONE, PHRL1, R, ZERO
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE ONE, ZERO
C
COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
7 NSLP, NYH
C
DATA ONE /1.0D0/, ZERO /0.0D0/
C
IERSL = 0
GO TO (100, 100, 300, 400, 400), MITER
c Replaced LINPACK dgesl with LAPACK dgetrs
c 100 CALL DGESL (WM(3), N, N, IWM(31), X, 0)
100 CALL DGETRS ('N', N, 1, WM(3), N, IWM(31), X, N, IER)
RETURN
C
300 PHRL1 = WM(2)
HRL1 = H*RL1
WM(2) = HRL1
IF (HRL1 .EQ. PHRL1) GO TO 330
R = HRL1/PHRL1
DO 320 I = 1,N
DI = ONE - R*(ONE - ONE/WM(I+2))
IF (ABS(DI) .EQ. ZERO) GO TO 390
320 WM(I+2) = ONE/DI
C
330 DO 340 I = 1,N
340 X(I) = WM(I+2)*X(I)
RETURN
390 IERSL = 1
RETURN
C
400 ML = IWM(1)
MU = IWM(2)
MEBAND = 2*ML + MU + 1
c Replaced LINPACK dgbsl with LAPACK dgbtrs
c CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(31), X, 0)
CALL DGBTRS ('N', N, ML, MU, 1, WM(3), MEBAND, IWM(31), X, N, IER)
RETURN
C----------------------- End of Subroutine DVSOL -----------------------
END
*DECK DVSRCO
SUBROUTINE DVSRCO (RSAV, ISAV, JOB)
DOUBLE PRECISION RSAV
INTEGER ISAV, JOB
DIMENSION RSAV(*), ISAV(*)
C-----------------------------------------------------------------------
C Call sequence input -- RSAV, ISAV, JOB
C Call sequence output -- RSAV, ISAV
C COMMON block variables accessed -- All of /DVOD01/ and /DVOD02/
C
C Subroutines/functions called by DVSRCO.. None
C-----------------------------------------------------------------------
C This routine saves or restores (depending on JOB) the contents of the
C COMMON blocks DVOD01 and DVOD02, which are used internally by DVODE.
C
C RSAV = real array of length 49 or more.
C ISAV = integer array of length 41 or more.
C JOB = flag indicating to save or restore the COMMON blocks..
C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV).
C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV).
C A call with JOB = 2 presumes a prior call with JOB = 1.
C-----------------------------------------------------------------------
DOUBLE PRECISION RVOD1, RVOD2
INTEGER IVOD1, IVOD2
INTEGER I, LENIV1, LENIV2, LENRV1, LENRV2
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this integrator.
C-----------------------------------------------------------------------
SAVE LENRV1, LENIV1, LENRV2, LENIV2
C
COMMON /DVOD01/ RVOD1(48), IVOD1(33)
COMMON /DVOD02/ RVOD2(1), IVOD2(8)
DATA LENRV1/48/, LENIV1/33/, LENRV2/1/, LENIV2/8/
C
IF (JOB .EQ. 2) GO TO 100
DO 10 I = 1,LENRV1
10 RSAV(I) = RVOD1(I)
DO 15 I = 1,LENRV2
15 RSAV(LENRV1+I) = RVOD2(I)
C
DO 20 I = 1,LENIV1
20 ISAV(I) = IVOD1(I)
DO 25 I = 1,LENIV2
25 ISAV(LENIV1+I) = IVOD2(I)
C
RETURN
C
100 CONTINUE
DO 110 I = 1,LENRV1
110 RVOD1(I) = RSAV(I)
DO 115 I = 1,LENRV2
115 RVOD2(I) = RSAV(LENRV1+I)
C
DO 120 I = 1,LENIV1
120 IVOD1(I) = ISAV(I)
DO 125 I = 1,LENIV2
125 IVOD2(I) = ISAV(LENIV1+I)
C
RETURN
C----------------------- End of Subroutine DVSRCO ----------------------
END
*DECK DEWSET
SUBROUTINE DEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT)
DOUBLE PRECISION RTOL, ATOL, YCUR, EWT
INTEGER N, ITOL
DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N)
C-----------------------------------------------------------------------
C Call sequence input -- N, ITOL, RTOL, ATOL, YCUR
C Call sequence output -- EWT
C COMMON block variables accessed -- None
C
C Subroutines/functions called by DEWSET.. None
C-----------------------------------------------------------------------
C This subroutine sets the error weight vector EWT according to
C EWT(i) = RTOL(i)*abs(YCUR(i)) + ATOL(i), i = 1,...,N,
C with the subscript on RTOL and/or ATOL possibly replaced by 1 above,
C depending on the value of ITOL.
C-----------------------------------------------------------------------
INTEGER I
C
GO TO (10, 20, 30, 40), ITOL
10 CONTINUE
DO 15 I = 1, N
15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1)
RETURN
20 CONTINUE
DO 25 I = 1, N
25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I)
RETURN
30 CONTINUE
DO 35 I = 1, N
35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1)
RETURN
40 CONTINUE
DO 45 I = 1, N
45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I)
RETURN
C----------------------- End of Subroutine DEWSET ----------------------
END
*DECK DVNORM
DOUBLE PRECISION FUNCTION DVNORM (N, V, W)
DOUBLE PRECISION V, W
INTEGER N
DIMENSION V(N), W(N)
C-----------------------------------------------------------------------
C Call sequence input -- N, V, W
C Call sequence output -- None
C COMMON block variables accessed -- None
C
C Subroutines/functions called by DVNORM.. None
C-----------------------------------------------------------------------
C This function routine computes the weighted root-mean-square norm
C of the vector of length N contained in the array V, with weights
C contained in the array W of length N..
C DVNORM = sqrt( (1/N) * sum( V(i)*W(i) )**2 )
C-----------------------------------------------------------------------
DOUBLE PRECISION SUM
INTEGER I
C
SUM = 0.0D0
DO 10 I = 1, N
10 SUM = SUM + (V(I)*W(I))**2
DVNORM = SQRT(SUM/REAL(N))
RETURN
C----------------------- End of Function DVNORM ------------------------
END
*DECK D1MACH
DOUBLE PRECISION FUNCTION D1MACH (IDUM)
INTEGER IDUM
C-----------------------------------------------------------------------
C This routine computes the unit roundoff of the machine.
C This is defined as the smallest positive machine number
C u such that 1.0 + u .ne. 1.0
C
C Subroutines/functions called by D1MACH.. None
C-----------------------------------------------------------------------
DOUBLE PRECISION U, COMP
U = 1.0D0
10 U = U*0.5D0
COMP = 1.0D0 + U
IF (COMP .NE. 1.0D0) GO TO 10
D1MACH = U*2.0D0
RETURN
C----------------------- End of Function D1MACH ------------------------
END
*DECK XERRWD
SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
DOUBLE PRECISION R1, R2
INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR
CHARACTER*1 MSG(NMES)
C-----------------------------------------------------------------------
C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV,
C as given here, constitute a simplified version of the SLATEC error
C handling package.
C Written by A. C. Hindmarsh and P. N. Brown at LLNL.
C Version of 18 November, 1992.
C This version is in double precision.
C
C All arguments are input arguments.
C
C MSG = The message (character array).
C NMES = The length of MSG (number of characters).
C NERR = The error number (not used).
C LEVEL = The error level..
C 0 or 1 means recoverable (control returns to caller).
C 2 means fatal (run is aborted--see note below).
C NI = Number of integers (0, 1, or 2) to be printed with message.
C I1,I2 = Integers to be printed, depending on NI.
C NR = Number of reals (0, 1, or 2) to be printed with message.
C R1,R2 = Reals to be printed, depending on NR.
C
C Note.. this routine is machine-dependent and specialized for use
C in limited context, in the following ways..
C 1. The argument MSG is assumed to be of type CHARACTER, and
C the message is printed with a format of (1X,80A1).
C 2. The message is assumed to take only one line.
C Multi-line messages are generated by repeated calls.
C 3. If LEVEL = 2, control passes to the statement STOP
C to abort the run. This statement may be machine-dependent.
C 4. R1 and R2 are assumed to be in double precision and are printed
C in D21.13 format.
C
C For a different default logical unit number, change the data
C statement in function routine IXSAV.
C For a different run-abort command, change the statement following
C statement 100 at the end.
C-----------------------------------------------------------------------
C Subroutines called by XERRWD.. None
C Function routine called by XERRWD.. IXSAV
C-----------------------------------------------------------------------
C
INTEGER I, LUNIT, IXSAV, MESFLG
C
C Get logical unit number and message print flag. ----------------------
LUNIT = IXSAV (1, 0, .FALSE.)
MESFLG = IXSAV (2, 0, .FALSE.)
IF (MESFLG .EQ. 0) GO TO 100
C Write the message. ---------------------------------------------------
WRITE (LUNIT,10) (MSG(I),I=1,NMES)
10 FORMAT(1X,80A1)
IF (NI .EQ. 1) WRITE (LUNIT, 20) I1
20 FORMAT(6X,'In above message, I1 =',I10)
IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2
30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10)
IF (NR .EQ. 1) WRITE (LUNIT, 40) R1
40 FORMAT(6X,'In above message, R1 =',D21.13)
IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2
50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13)
C Abort the run if LEVEL = 2. ------------------------------------------
100 IF (LEVEL .NE. 2) RETURN
STOP
C----------------------- End of Subroutine XERRWD ----------------------
END
*DECK XSETUN
SUBROUTINE XSETUN (LUN)
C-----------------------------------------------------------------------
C This routine resets the logical unit number for messages.
C
C Subroutines called by XSETUN.. None
C Function routine called by XSETUN.. IXSAV
C-----------------------------------------------------------------------
INTEGER LUN, JUNK, IXSAV
C
IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.)
RETURN
C----------------------- End of Subroutine XSETUN ----------------------
END
*DECK XSETF
SUBROUTINE XSETF (MFLAG)
C-----------------------------------------------------------------------
C This routine resets the print control flag MFLAG.
C
C Subroutines called by XSETF.. None
C Function routine called by XSETF.. IXSAV
C-----------------------------------------------------------------------
INTEGER MFLAG, JUNK, IXSAV
C
IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.)
RETURN
C----------------------- End of Subroutine XSETF -----------------------
END
*DECK IXSAV
INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET)
LOGICAL ISET
INTEGER IPAR, IVALUE
C-----------------------------------------------------------------------
C IXSAV saves and recalls one of two error message parameters:
C LUNIT, the logical unit number to which messages are printed, and
C MESFLG, the message print flag.
C This is a modification of the SLATEC library routine J4SAVE.
C
C Saved local variables..
C LUNIT = Logical unit number for messages.
C The default is 6 (machine-dependent).
C MESFLG = Print control flag..
C 1 means print all messages (the default).
C 0 means no printing.
C
C On input..
C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG).
C IVALUE = The value to be set for the parameter, if ISET = .TRUE.
C ISET = Logical flag to indicate whether to read or write.
C If ISET = .TRUE., the parameter will be given
C the value IVALUE. If ISET = .FALSE., the parameter
C will be unchanged, and IVALUE is a dummy argument.
C
C On return..
C IXSAV = The (old) value of the parameter.
C
C Subroutines/functions called by IXSAV.. None
C-----------------------------------------------------------------------
INTEGER LUNIT, MESFLG
C-----------------------------------------------------------------------
C The following Fortran-77 declaration is to cause the values of the
C listed (local) variables to be saved between calls to this routine.
C-----------------------------------------------------------------------
SAVE LUNIT, MESFLG
DATA LUNIT/6/, MESFLG/1/
C
IF (IPAR .EQ. 1) THEN
IXSAV = LUNIT
IF (ISET) LUNIT = IVALUE
ENDIF
C
IF (IPAR .EQ. 2) THEN
IXSAV = MESFLG
IF (ISET) MESFLG = IVALUE
ENDIF
C
RETURN
C----------------------- End of Function IXSAV -------------------------
END
|