File: quadpack.h

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (201 lines) | stat: -rw-r--r-- 6,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* MULTIPACK module by Travis Oliphant

Copyright (c) 1999 Travis Oliphant all rights reserved
oliphant.travis@ieee.org
Permission to use, modify, and distribute this software is given under the 
terms of the Scipy License

NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.
*/


/* This extension module is a collection of wrapper functions around
common FORTRAN code in the packages MINPACK, ODEPACK, and QUADPACK plus
some differential algebraic equation solvers.

The wrappers are meant to be nearly direct translations between the
FORTAN code and Python.  Some parameters like sizes do not need to be 
passed since they are available from the objects.  

It is anticipated that a pure Python module be written to call these lower
level routines and make a simpler user interface.  All of the routines define
default values for little-used parameters so that even the raw routines are
quite useful without a separate wrapper. 

FORTRAN Outputs that are not either an error indicator or the sought-after
results are placed in a dictionary and returned as an optional member of
the result tuple when the full_output argument is non-zero.
*/


#include "Python.h"
#include "numpy/npy_3kcompat.h"
#include "numpy/arrayobject.h"
#include <setjmp.h>


#define PYERR(errobj,message) {PyErr_SetString(errobj,message); goto fail;}
#define PYERR2(errobj,message) {PyErr_Print(); PyErr_SetString(errobj, message); goto fail;}
#define ISCONTIGUOUS(m) ((m)->flags & CONTIGUOUS)


static PyObject *quadpack_python_function = NULL;
static PyObject *quadpack_extra_arguments = NULL;	/* a tuple */
static jmp_buf quadpack_jmpbuf;

static double (*quadpack_ctypes_function) (double) = NULL;

static PyObject *quadpack_error;
static double *global_args = NULL;
static double (*global_function) (int, double *) = NULL;
static int *global_n_args = NULL;

/* Stack Storage for re-entrant capability */
typedef struct {
    void *global0;
    void *global1;
    jmp_buf jmp;
    PyObject *arg;
} QStorage;

typedef double (*_sp_double_func) (double);

typedef struct {
    PyObject_HEAD char *b_ptr;
} _sp_cfuncptr_object;

static _sp_double_func get_ctypes_function_pointer(PyObject * obj)
{
    return (*((void **) (((_sp_cfuncptr_object *) (obj))->b_ptr)));
}

static int quad_init_func(QStorage * store, PyObject * fun, PyObject * arg)
{
    store->global0 = (void *) quadpack_python_function;
    store->global1 = (void *) quadpack_extra_arguments;
    memcpy(&(store->jmp), &quadpack_jmpbuf, sizeof(jmp_buf));
    store->arg = arg;
    if (store->arg == NULL) {
      	if ((store->arg = PyTuple_New(0)) == NULL)
      	    return NPY_FAIL;
    }
    else {
      	Py_INCREF(store->arg);	/* We decrement on restore */
    }
    if (!PyTuple_Check(store->arg)) {
      	PyErr_SetString(quadpack_error,
      			"Extra Arguments must be in a tuple");
      	Py_XDECREF(store->arg);
      	return NPY_FAIL; 
    }
    quadpack_python_function = fun;
    quadpack_extra_arguments = store->arg;
    return NPY_SUCCEED;
}

static void quad_restore_func(QStorage * store, int *ierr)
{
    quadpack_python_function = (PyObject *) store->global0;
    quadpack_extra_arguments = (PyObject *) store->global1;
    memcpy(&quadpack_jmpbuf, &(store->jmp), sizeof(jmp_buf));
    Py_XDECREF(store->arg);
    if (ierr != NULL) {
      	if (PyErr_Occurred()) {
      	    *ierr = 80;		/* Python error */
      	    PyErr_Clear();
      	}
    }
}

static int init_ctypes_func(QStorage * store, PyObject * fun)
{
    store->global0 = quadpack_ctypes_function;
    store->global1 = get_ctypes_function_pointer(fun);
    if (store->global1 == NULL)
      	return NPY_FAIL;
    quadpack_ctypes_function = store->global1;
    return NPY_SUCCEED;
}

static void restore_ctypes_func(QStorage * store)
{
    quadpack_ctypes_function = store->global0;
}

static double *c_array_from_tuple(PyObject * tuple)
{
    Py_ssize_t n_args, i;
    double *array;
    PyObject *item = NULL;
    /* Accepts Python tuple and converts to double array in c for use in
     * multivariate ctypes */
    if (!PyTuple_CheckExact(tuple))
      	return NULL;		/*Ensure python tuple is passed in */
    n_args = PyTuple_Size(tuple);
    array = (double *) malloc(sizeof(double) * (n_args + 1));
    array[0] = 0.0;
    for (i = 0; i < n_args; i++) {
      	item = PyTuple_GetItem(tuple, i);
      	array[i + 1] = PyFloat_AsDouble(item);
    }
    return array;
}

static int
init_c_multivariate(QStorage * store, PyObject * f, PyObject * args)
{
    /*Initialize function of n+1 variables
     * Parameters: 
     * store - Qstorage pointer to hold current state of stack
     * f - Pyobject function pointer to function to evaluate
     * n - integer number of extra parameters 
     * args - Python tuple with parameters x[1] ... x[n]
     * Output:
     * NPY_FAIL on failure 
     * NPY_SUCCEED on success
     */
    int n_args_ref;

    /*Store current parameters */
    store->global0 = global_function;
    store->global1 = global_n_args;
    store->arg = global_args;

    /*Set new parameters */
    if ((global_function = get_ctypes_function_pointer(f)) == NULL) {
      	PyErr_SetString(quadpack_error,
      			"Ctypes function not correctly initialized");
      	return NPY_FAIL;
    }
    if ((global_args = c_array_from_tuple(args)) == NULL) {
      	PyErr_SetString(quadpack_error,
      			"Extra Arguments must be in a tuple");
      	return NPY_FAIL;
    }
    n_args_ref = PyTuple_Size(args);
    global_n_args = &n_args_ref;
    return NPY_SUCCEED;
}

static double call_c_multivariate(double *x)
{
    /*Evaluates user defined function as function of one variable after initialization.
     * Parameter: 
     * x: Pointer to double x at which to evaluate function
     * Output: 
     * Function evaluated at x with initialized parameters
     * Evaluate at  [*x, concatenated with params [x1, . . . , xn]] */

    global_args[0] = *x;
    return global_function(*global_n_args, global_args);
}

static void restore_c_multivariate(QStorage * store)
{
    /*Frees memory allocated for args array, then restores globals for thread safety. */
    free(store->arg);
    global_function = store->global0;
    global_n_args = store->global1;
    global_args = store->arg;
    return;
}