1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
See also:
R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner
Quadpack: a Subroutine Package for Automatic Integration
Springer Verlag, 1983. Series in Computational Mathematics v.1
515.43/Q1S 100394Z
SUBROUTINE QPDOC
C***BEGIN PROLOGUE QPDOC
C***DATE WRITTEN 810401 (YYMMDD)
C***REVISION DATE 840417 (YYMMDD)
C***CATEGORY NO. H2
C***KEYWORDS SURVEY OF INTEGRATORS, GUIDELINES FOR SELECTION,QUADPACK
C***AUTHOR PIESSENS, ROBERT(APPL. MATH. AND PROGR. DIV.- K.U.LEUVEN)
C DE DONKER, ELISE(APPL. MATH. AND PROGR. DIV.- K.U.LEUVEN
C KAHANER,DAVID(NATIONAL BUREAU OF STANDARDS)
C***PURPOSE QUADPACK documentation routine.
C***DESCRIPTION
C 1. Introduction
C ------------
C QUADPACK is a FORTRAN subroutine package for the numerical
C computation of definite one-dimensional integrals. It originated
C from a joint project of R. Piessens and E. de Doncker (Appl.
C Math. and Progr. Div.- K.U.Leuven, Belgium), C. Ueberhuber (Inst.
C Fuer Math.- Techn.U.Wien, Austria), and D. Kahaner (Nation. Bur.
C of Standards- Washington D.C., U.S.A.).
C Documentation routine QPDOC describes the package in the form it
C was released from A.M.P.D.- Leuven, for adherence to the SLATEC
C library in May 1981. Apart from a survey of the integrators, some
C guidelines will be given in order to help the QUADPACK user with
C selecting an appropriate routine or a combination of several
C routines for handling his problem.
C
C In the LONG DESCRIPTION of QPDOC it is demonstrated how to call
C the integrators, by means of small example calling programs.
C
C For precise guidelines involving the use of each routine in
C particular, we refer to the extensive introductory comments
C within each routine.
C
C 2. Survey
C ------
C The following list gives an overview of the QUADPACK integrators.
C The routine names for the DOUBLE PRECISION versions are preceded
C by the letter D.
C
C - QNG : Is a simple non-adaptive automatic integrator, based on
C a sequence of rules with increasing degree of algebraic
C precision (Patterson, 1968).
C
C - QAG : Is a simple globally adaptive integrator using the
C strategy of Aind (Piessens, 1973). It is possible to
C choose between 6 pairs of Gauss-Kronrod quadrature
C formulae for the rule evaluation component. The pairs
C of high degree of precision are suitable for handling
C integration difficulties due to a strongly oscillating
C integrand.
C
C - QAGS : Is an integrator based on globally adaptive interval
C subdivision in connection with extrapolation (de Doncker,
C 1978) by the Epsilon algorithm (Wynn, 1956).
C
C - QAGP : Serves the same purposes as QAGS, but also allows
C for eventual user-supplied information, i.e. the
C abscissae of internal singularities, discontinuities
C and other difficulties of the integrand function.
C The algorithm is a modification of that in QAGS.
C
C - QAGI : Handles integration over infinite intervals. The
C infinite range is mapped onto a finite interval and
C then the same strategy as in QAGS is applied.
C
C - QAWO : Is a routine for the integration of COS(OMEGA*X)*F(X)
C or SIN(OMEGA*X)*F(X) over a finite interval (A,B).
C OMEGA is is specified by the user
C The rule evaluation component is based on the
C modified Clenshaw-Curtis technique.
C An adaptive subdivision scheme is used connected with
C an extrapolation procedure, which is a modification
C of that in QAGS and provides the possibility to deal
C even with singularities in F.
C
C - QAWF : Calculates the Fourier cosine or Fourier sine
C transform of F(X), for user-supplied interval (A,
C INFINITY), OMEGA, and F. The procedure of QAWO is
C used on successive finite intervals, and convergence
C acceleration by means of the Epsilon algorithm (Wynn,
C 1956) is applied to the series of the integral
C contributions.
C
C - QAWS : Integrates W(X)*F(X) over (A,B) with A.LT.B finite,
C and W(X) = ((X-A)**ALFA)*((B-X)**BETA)*V(X)
C where V(X) = 1 or LOG(X-A) or LOG(B-X)
C or LOG(X-A)*LOG(B-X)
C and ALFA.GT.(-1), BETA.GT.(-1).
C The user specifies A, B, ALFA, BETA and the type of
C the function V.
C A globally adaptive subdivision strategy is applied,
C with modified Clenshaw-Curtis integration on the
C subintervals which contain A or B.
C
C - QAWC : Computes the Cauchy Principal Value of F(X)/(X-C)
C over a finite interval (A,B) and for
C user-determined C.
C The strategy is globally adaptive, and modified
C Clenshaw-Curtis integration is used on the subranges
C which contain the point X = C.
C
C Each of the routines above also has a "more detailed" version
C with a name ending in E, as QAGE. These provide more
C information and control than the easier versions.
C
C
C The preceeding routines are all automatic. That is, the user
C inputs his problem and an error tolerance. The routine
C attempts to perform the integration to within the requested
C absolute or relative error.
C There are, in addition, a number of non-automatic integrators.
C These are most useful when the problem is such that the
C user knows that a fixed rule will provide the accuracy
C required. Typically they return an error estimate but make
C no attempt to satisfy any particular input error request.
C
C QK15
C QK21
C QK31
C QK41
C QK51
C QK61
C Estimate the integral on [a,b] using 15, 21,..., 61
C point rule and return an error estimate.
C QK15I 15 point rule for (semi)infinite interval.
C QK15W 15 point rule for special singular weight functions.
C QC25C 25 point rule for Cauchy Principal Values
C QC25F 25 point rule for sin/cos integrand.
C QMOMO Integrates k-th degree Chebychev polynomial times
C function with various explicit singularities.
C
C 3. Guidelines for the use of QUADPACK
C ----------------------------------
C Here it is not our purpose to investigate the question when
C automatic quadrature should be used. We shall rather attempt
C to help the user who already made the decision to use QUADPACK,
C with selecting an appropriate routine or a combination of
C several routines for handling his problem.
C
C For both quadrature over finite and over infinite intervals,
C one of the first questions to be answered by the user is
C related to the amount of computer time he wants to spend,
C versus his -own- time which would be needed, for example, for
C manual subdivision of the interval or other analytic
C manipulations.
C
C (1) The user may not care about computer time, or not be
C willing to do any analysis of the problem. especially when
C only one or a few integrals must be calculated, this attitude
C can be perfectly reasonable. In this case it is clear that
C either the most sophisticated of the routines for finite
C intervals, QAGS, must be used, or its analogue for infinite
C intervals, GAGI. These routines are able to cope with
C rather difficult, even with improper integrals.
C This way of proceeding may be expensive. But the integrator
C is supposed to give you an answer in return, with additional
C information in the case of a failure, through its error
C estimate and flag. Yet it must be stressed that the programs
C cannot be totally reliable.
C ------
C
C (2) The user may want to examine the integrand function.
C If bad local difficulties occur, such as a discontinuity, a
C singularity, derivative singularity or high peak at one or
C more points within the interval, the first advice is to
C split up the interval at these points. The integrand must
C then be examinated over each of the subintervals separately,
C so that a suitable integrator can be selected for each of
C them. If this yields problems involving relative accuracies
C to be imposed on -finite- subintervals, one can make use of
C QAGP, which must be provided with the positions of the local
C difficulties. However, if strong singularities are present
C and a high accuracy is requested, application of QAGS on the
C subintervals may yield a better result.
C
C For quadrature over finite intervals we thus dispose of QAGS
C and
C - QNG for well-behaved integrands,
C - QAG for functions with an oscillating behaviour of a non
C specific type,
C - QAWO for functions, eventually singular, containing a
C factor COS(OMEGA*X) or SIN(OMEGA*X) where OMEGA is known,
C - QAWS for integrands with Algebraico-Logarithmic end point
C singularities of known type,
C - QAWC for Cauchy Principal Values.
C
C Remark
C ------
C On return, the work arrays in the argument lists of the
C adaptive integrators contain information about the interval
C subdivision process and hence about the integrand behaviour:
C the end points of the subintervals, the local integral
C contributions and error estimates, and eventually other
C characteristics. For this reason, and because of its simple
C globally adaptive nature, the routine QAG in particular is
C well-suited for integrand examination. Difficult spots can
C be located by investigating the error estimates on the
C subintervals.
C
C For infinite intervals we provide only one general-purpose
C routine, QAGI. It is based on the QAGS algorithm applied
C after a transformation of the original interval into (0,1).
C Yet it may eventuate that another type of transformation is
C more appropriate, or one might prefer to break up the
C original interval and use QAGI only on the infinite part
C and so on. These kinds of actions suggest a combined use of
C different QUADPACK integrators. Note that, when the only
C difficulty is an integrand singularity at the finite
C integration limit, it will in general not be necessary to
C break up the interval, as QAGI deals with several types of
C singularity at the boundary point of the integration range.
C It also handles slowly convergent improper integrals, on
C the condition that the integrand does not oscillate over
C the entire infinite interval. If it does we would advise
C to sum succeeding positive and negative contributions to
C the integral -e.g. integrate between the zeros- with one
C or more of the finite-range integrators, and apply
C convergence acceleration eventually by means of QUADPACK
C subroutine QELG which implements the Epsilon algorithm.
C Such quadrature problems include the Fourier transform as
C a special case. Yet for the latter we have an automatic
C integrator available, QAWF.
C
C***LONG DESCRIPTION
C 4. Example Programs
C ----------------
C 4.1. Calling Program for QNG
C -----------------------
C
C REAL A,ABSERR,B,F,EPSABS,EPSREL,RESULT
C INTEGER IER,NEVAL
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C CALL QNG(F,A,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = EXP(X)/(X*X+0.1E+01)
C RETURN
C END
C
C 4.2. Calling Program for QAG
C -----------------------
C
C REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,WORK
C INTEGER IER,IWORK,KEY,LAST,LENW,LIMIT,NEVAL
C DIMENSION IWORK(100),WORK(400)
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C KEY = 6
C LIMIT = 100
C LENW = LIMIT*4
C CALL QAG(F,A,B,EPSABS,EPSREL,KEY,RESULT,ABSERR,NEVAL,
C * IER,LIMIT,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 2.0E0/(2.0E0+SIN(31.41592653589793E0*X))
C RETURN
C END
C
C 4.3. Calling Program for QAGS
C ------------------------
C
C REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,WORK
C INTEGER IER,IWORK,LAST,LENW,LIMIT,NEVAL
C DIMENSION IWORK(100),WORK(400)
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C LIMIT = 100
C LENW = LIMIT*4
C CALL QAGS(F,A,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER,
C * LIMIT,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 0.0E0
C IF(X.GT.0.0E0) F = 1.0E0/SQRT(X)
C RETURN
C END
C
C 4.4. Calling Program for QAGP
C ------------------------
C
C REAL A,ABSERR,B,EPSABS,EPSREL,F,POINTS,RESULT,WORK
C INTEGER IER,IWORK,LAST,LENIW,LENW,LIMIT,NEVAL,NPTS2
C DIMENSION IWORK(204),POINTS(4),WORK(404)
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C NPTS2 = 4
C POINTS(1) = 1.0E0/7.0E0
C POINTS(2) = 2.0E0/3.0E0
C LIMIT = 100
C LENIW = LIMIT*2+NPTS2
C LENW = LIMIT*4+NPTS2
C CALL QAGP(F,A,B,NPTS2,POINTS,EPSABS,EPSREL,RESULT,ABSERR,
C * NEVAL,IER,LENIW,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 0.0E+00
C IF(X.NE.1.0E0/7.0E0.AND.X.NE.2.0E0/3.0E0) F =
C * ABS(X-1.0E0/7.0E0)**(-0.25E0)*
C * ABS(X-2.0E0/3.0E0)**(-0.55E0)
C RETURN
C END
C
C 4.5. Calling Program for QAGI
C ------------------------
C
C REAL ABSERR,BOUN,EPSABS,EPSREL,F,RESULT,WORK
C INTEGER IER,INF,IWORK,LAST,LENW,LIMIT,NEVAL
C DIMENSION IWORK(100),WORK(400)
C EXTERNAL F
C BOUN = 0.0E0
C INF = 1
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C LIMIT = 100
C LENW = LIMIT*4
C CALL QAGI(F,BOUN,INF,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,
C * IER,LIMIT,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 0.0E0
C IF(X.GT.0.0E0) F = SQRT(X)*ALOG(X)/
C * ((X+1.0E0)*(X+2.0E0))
C RETURN
C END
C
C 4.6. Calling Program for QAWO
C ------------------------
C
C REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,OMEGA,WORK
C INTEGER IER,INTEGR,IWORK,LAST,LENIW,LENW,LIMIT,MAXP1,NEVAL
C DIMENSION IWORK(200),WORK(925)
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C OMEGA = 10.0E0
C INTEGR = 1
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C LIMIT = 100
C LENIW = LIMIT*2
C MAXP1 = 21
C LENW = LIMIT*4+MAXP1*25
C CALL QAWO(F,A,B,OMEGA,INTEGR,EPSABS,EPSREL,RESULT,ABSERR,
C * NEVAL,IER,LENIW,MAXP1,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 0.0E0
C IF(X.GT.0.0E0) F = EXP(-X)*ALOG(X)
C RETURN
C END
C
C 4.7. Calling Program for QAWF
C ------------------------
C
C REAL A,ABSERR,EPSABS,F,RESULT,OMEGA,WORK
C INTEGER IER,INTEGR,IWORK,LAST,LENIW,LENW,LIMIT,LIMLST,
C * LST,MAXP1,NEVAL
C DIMENSION IWORK(250),WORK(1025)
C EXTERNAL F
C A = 0.0E0
C OMEGA = 8.0E0
C INTEGR = 2
C EPSABS = 1.0E-3
C LIMLST = 50
C LIMIT = 100
C LENIW = LIMIT*2+LIMLST
C MAXP1 = 21
C LENW = LENIW*2+MAXP1*25
C CALL QAWF(F,A,OMEGA,INTEGR,EPSABS,RESULT,ABSERR,NEVAL,
C * IER,LIMLST,LST,LENIW,MAXP1,LENW,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C IF(X.GT.0.0E0) F = SIN(50.0E0*X)/(X*SQRT(X))
C RETURN
C END
C
C 4.8. Calling Program for QAWS
C ------------------------
C
C REAL A,ABSERR,ALFA,B,BETA,EPSABS,EPSREL,F,RESULT,WORK
C INTEGER IER,INTEGR,IWORK,LAST,LENW,LIMIT,NEVAL
C DIMENSION IWORK(100),WORK(400)
C EXTERNAL F
C A = 0.0E0
C B = 1.0E0
C ALFA = -0.5E0
C BETA = -0.5E0
C INTEGR = 1
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C LIMIT = 100
C LENW = LIMIT*4
C CALL QAWS(F,A,B,ALFA,BETA,INTEGR,EPSABS,EPSREL,RESULT,
C * ABSERR,NEVAL,IER,LIMIT,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = SIN(10.0E0*X)
C RETURN
C END
C
C 4.9. Calling Program for QAWC
C ------------------------
C
C REAL A,ABSERR,B,C,EPSABS,EPSREL,F,RESULT,WORK
C INTEGER IER,IWORK,LAST,LENW,LIMIT,NEVAL
C DIMENSION IWORK(100),WORK(400)
C EXTERNAL F
C A = -1.0E0
C B = 1.0E0
C C = 0.5E0
C EPSABS = 0.0E0
C EPSREL = 1.0E-3
C LIMIT = 100
C LENW = LIMIT*4
C CALL QAWC(F,A,B,C,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,
C * IER,LIMIT,LENW,LAST,IWORK,WORK)
C C INCLUDE WRITE STATEMENTS
C STOP
C END
C C
C REAL FUNCTION F(X)
C REAL X
C F = 1.0E0/(X*X+1.0E-4)
C RETURN
C END
C***REFERENCES (NONE)
C***ROUTINES CALLED (NONE)
C***END PROLOGUE QPDOC
|