1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
subroutine dqagi(f,bound,inf,epsabs,epsrel,result,abserr,neval,
* ier,limit,lenw,last,iwork,work)
c***begin prologue dqagi
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a1,h2a4a1
c***keywords automatic integrator, infinite intervals,
c general-purpose, transformation, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. -k.u.leuven
c***purpose the routine calculates an approximation result to a given
c integral i = integral of f over (bound,+infinity)
c or i = integral of f over (-infinity,bound)
c or i = integral of f over (-infinity,+infinity)
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c integration over infinite intervals
c standard fortran subroutine
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c bound - double precision
c finite bound of integration range
c (has no meaning if interval is doubly-infinite)
c
c inf - integer
c indicating the kind of integration range involved
c inf = 1 corresponds to (bound,+infinity),
c inf = -1 to (-infinity,bound),
c inf = 2 to (-infinity,+infinity).
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine. the
c estimates for result and error are less
c reliable. it is assumed that the requested
c accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking the according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is assumed that the requested tolerance
c cannot be achieved, and that the returned
c result is the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or limit.lt.1 or leniw.lt.limit*4.
c result, abserr, neval, last are set to
c zero. exept when limit or leniw is
c invalid, iwork(1), work(limit*2+1) and
c work(limit*3+1) are set to zero, work(1)
c is set to a and work(limit+1) to b.
c
c dimensioning parameters
c limit - integer
c dimensioning parameter for iwork
c limit determines the maximum number of subintervals
c in the partition of the given integration interval
c (a,b), limit.ge.1.
c if limit.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least limit*4.
c if lenw.lt.limit*4, the routine will end
c with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least limit, the first
c k elements of which contain pointers
c to the error estimates over the subintervals,
c such that work(limit*3+iwork(1)),... ,
c work(limit*3+iwork(k)) form a decreasing
c sequence, with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ...,work(limit*2+last) contain the
c integral approximations over the subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the error estimates.
c***references (none)
c***routines called dqagie,xerror
c***end prologue dqagi
c
double precision abserr,bound,epsabs,epsrel,f,result,work
integer ier,inf,iwork,last,lenw,limit,lvl,l1,l2,l3,neval
c
dimension iwork(limit),work(lenw)
c
external f
c
c check validity of limit and lenw.
c
c***first executable statement dqagi
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limit.lt.1.or.lenw.lt.limit*4) go to 10
c
c prepare call for dqagie.
c
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
c
call dqagie(f,bound,inf,epsabs,epsrel,limit,result,abserr,
* neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last)
c
c call error handler if necessary.
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) call xerror('abnormal return from dqagi',26,ier,lvl)
return
end
|