1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
subroutine dqagp(f,a,b,npts2,points,epsabs,epsrel,result,abserr,
* neval,ier,leniw,lenw,last,iwork,work)
c***begin prologue dqagp
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1
c***keywords automatic integrator, general-purpose,
c singularities at user specified points,
c extrapolation, globally adaptive
c***author piessens,robert,appl. math. & progr. div - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f over (a,b),
c hopefully satisfying following claim for accuracy
c break points of the integration interval, where local
c difficulties of the integrand may occur (e.g.
c singularities, discontinuities), are provided by the user.
c***description
c
c computation of a definite integral
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c npts2 - integer
c number equal to two more than the number of
c user-supplied break points within the integration
c range, npts.ge.2.
c if npts2.lt.2, the routine will end with ier = 6.
c
c points - double precision
c vector of dimension npts2, the first (npts2-2)
c elements of which are the user provided break
c points. if these points do not constitute an
c ascending sequence there will be an automatic
c sorting.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine.
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking the according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (i.e. singularity,
c discontinuity within the interval), it
c should be supplied to the routine as an
c element of the vector points. if necessary
c an appropriate special-purpose integrator
c must be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is presumed that the requested
c tolerance cannot be achieved, and that
c the returned result is the best which
c can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.gt.0.
c = 6 the input is invalid because
c npts2.lt.2 or
c break points are specified outside
c the integration range or
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c result, abserr, neval, last are set to
c zero. exept when leniw or lenw or npts2 is
c invalid, iwork(1), iwork(limit+1),
c work(limit*2+1) and work(limit*3+1)
c are set to zero.
c work(1) is set to a and work(limit+1)
c to b (where limit = (leniw-npts2)/2).
c
c dimensioning parameters
c leniw - integer
c dimensioning parameter for iwork
c leniw determines limit = (leniw-npts2)/2,
c which is the maximum number of subintervals in the
c partition of the given integration interval (a,b),
c leniw.ge.(3*npts2-2).
c if leniw.lt.(3*npts2-2), the routine will end with
c ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least leniw*2-npts2.
c if lenw.lt.leniw*2-npts2, the routine will end
c with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least leniw. on return,
c the first k elements of which contain
c pointers to the error estimates over the
c subintervals, such that work(limit*3+iwork(1)),...,
c work(limit*3+iwork(k)) form a decreasing
c sequence, with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c iwork(limit+1), ...,iwork(limit+last) contain the
c subdivision levels of the subintervals, i.e.
c if (aa,bb) is a subinterval of (p1,p2)
c where p1 as well as p2 is a user-provided
c break point or integration limit, then (aa,bb) has
c level l if abs(bb-aa) = abs(p2-p1)*2**(-l),
c iwork(limit*2+1), ..., iwork(limit*2+npts2) have
c no significance for the user,
c note that limit = (leniw-npts2)/2.
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ..., work(limit*2+last) contain
c the integral approximations over the subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the corresponding error estimates,
c work(limit*4+1), ..., work(limit*4+npts2)
c contain the integration limits and the
c break points sorted in an ascending sequence.
c note that limit = (leniw-npts2)/2.
c
c***references (none)
c***routines called dqagpe,xerror
c***end prologue dqagp
c
double precision a,abserr,b,epsabs,epsrel,f,points,result,work
integer ier,iwork,last,leniw,lenw,limit,lvl,l1,l2,l3,l4,neval,
* npts2
c
dimension iwork(leniw),points(npts2),work(lenw)
c
external f
c
c check validity of limit and lenw.
c
c***first executable statement dqagp
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(leniw.lt.(3*npts2-2).or.lenw.lt.(leniw*2-npts2).or.npts2.lt.2)
* go to 10
c
c prepare call for dqagpe.
c
limit = (leniw-npts2)/2
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
l4 = limit+l3
c
call dqagpe(f,a,b,npts2,points,epsabs,epsrel,limit,result,abserr,
* neval,ier,work(1),work(l1),work(l2),work(l3),work(l4),
* iwork(1),iwork(l1),iwork(l2),last)
c
c call error handler if necessary.
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) call xerror('abnormal return from dqagp',26,ier,lvl)
return
end
|