File: dqagp.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (225 lines) | stat: -rw-r--r-- 10,516 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
      subroutine dqagp(f,a,b,npts2,points,epsabs,epsrel,result,abserr,
     *   neval,ier,leniw,lenw,last,iwork,work)
c***begin prologue  dqagp
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a2a1
c***keywords  automatic integrator, general-purpose,
c             singularities at user specified points,
c             extrapolation, globally adaptive
c***author  piessens,robert,appl. math. & progr. div - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose  the routine calculates an approximation result to a given
c            definite integral i = integral of f over (a,b),
c            hopefully satisfying following claim for accuracy
c            break points of the integration interval, where local
c            difficulties of the integrand may occur (e.g.
c            singularities, discontinuities), are provided by the user.
c***description
c
c        computation of a definite integral
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration
c
c            npts2  - integer
c                     number equal to two more than the number of
c                     user-supplied break points within the integration
c                     range, npts.ge.2.
c                     if npts2.lt.2, the routine will end with ier = 6.
c
c            points - double precision
c                     vector of dimension npts2, the first (npts2-2)
c                     elements of which are the user provided break
c                     points. if these points do not constitute an
c                     ascending sequence there will be an automatic
c                     sorting.
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the requested
c                             accuracy has been achieved.
c                     ier.gt.0 abnormal termination of the routine.
c                             the estimates for integral and error are
c                             less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                     ier = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more
c                             subdivisions by increasing the value of
c                             limit (and taking the according dimension
c                             adjustments into account). however, if
c                             this yields no improvement it is advised
c                             to analyze the integrand in order to
c                             determine the integration difficulties. if
c                             the position of a local difficulty can be
c                             determined (i.e. singularity,
c                             discontinuity within the interval), it
c                             should be supplied to the routine as an
c                             element of the vector points. if necessary
c                             an appropriate special-purpose integrator
c                             must be used, which is designed for
c                             handling the type of difficulty involved.
c                         = 2 the occurrence of roundoff error is
c                             detected, which prevents the requested
c                             tolerance from being achieved.
c                             the error may be under-estimated.
c                         = 3 extremely bad integrand behaviour occurs
c                             at some points of the integration
c                             interval.
c                         = 4 the algorithm does not converge.
c                             roundoff error is detected in the
c                             extrapolation table.
c                             it is presumed that the requested
c                             tolerance cannot be achieved, and that
c                             the returned result is the best which
c                             can be obtained.
c                         = 5 the integral is probably divergent, or
c                             slowly convergent. it must be noted that
c                             divergence can occur with any other value
c                             of ier.gt.0.
c                         = 6 the input is invalid because
c                             npts2.lt.2 or
c                             break points are specified outside
c                             the integration range or
c                             (epsabs.le.0 and
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c                             result, abserr, neval, last are set to
c                             zero. exept when leniw or lenw or npts2 is
c                             invalid, iwork(1), iwork(limit+1),
c                             work(limit*2+1) and work(limit*3+1)
c                             are set to zero.
c                             work(1) is set to a and work(limit+1)
c                             to b (where limit = (leniw-npts2)/2).
c
c         dimensioning parameters
c            leniw - integer
c                    dimensioning parameter for iwork
c                    leniw determines limit = (leniw-npts2)/2,
c                    which is the maximum number of subintervals in the
c                    partition of the given integration interval (a,b),
c                    leniw.ge.(3*npts2-2).
c                    if leniw.lt.(3*npts2-2), the routine will end with
c                    ier = 6.
c
c            lenw  - integer
c                    dimensioning parameter for work
c                    lenw must be at least leniw*2-npts2.
c                    if lenw.lt.leniw*2-npts2, the routine will end
c                    with ier = 6.
c
c            last  - integer
c                    on return, last equals the number of subintervals
c                    produced in the subdivision process, which
c                    determines the number of significant elements
c                    actually in the work arrays.
c
c         work arrays
c            iwork - integer
c                    vector of dimension at least leniw. on return,
c                    the first k elements of which contain
c                    pointers to the error estimates over the
c                    subintervals, such that work(limit*3+iwork(1)),...,
c                    work(limit*3+iwork(k)) form a decreasing
c                    sequence, with k = last if last.le.(limit/2+2), and
c                    k = limit+1-last otherwise
c                    iwork(limit+1), ...,iwork(limit+last) contain the
c                     subdivision levels of the subintervals, i.e.
c                     if (aa,bb) is a subinterval of (p1,p2)
c                     where p1 as well as p2 is a user-provided
c                     break point or integration limit, then (aa,bb) has
c                     level l if abs(bb-aa) = abs(p2-p1)*2**(-l),
c                    iwork(limit*2+1), ..., iwork(limit*2+npts2) have
c                     no significance for the user,
c                    note that limit = (leniw-npts2)/2.
c
c            work  - double precision
c                    vector of dimension at least lenw
c                    on return
c                    work(1), ..., work(last) contain the left
c                     end points of the subintervals in the
c                     partition of (a,b),
c                    work(limit+1), ..., work(limit+last) contain
c                     the right end points,
c                    work(limit*2+1), ..., work(limit*2+last) contain
c                     the integral approximations over the subintervals,
c                    work(limit*3+1), ..., work(limit*3+last)
c                     contain the corresponding error estimates,
c                    work(limit*4+1), ..., work(limit*4+npts2)
c                     contain the integration limits and the
c                     break points sorted in an ascending sequence.
c                    note that limit = (leniw-npts2)/2.
c
c***references  (none)
c***routines called  dqagpe,xerror
c***end prologue  dqagp
c
      double precision a,abserr,b,epsabs,epsrel,f,points,result,work
      integer ier,iwork,last,leniw,lenw,limit,lvl,l1,l2,l3,l4,neval,
     *  npts2
c
      dimension iwork(leniw),points(npts2),work(lenw)
c
      external f
c
c         check validity of limit and lenw.
c
c***first executable statement  dqagp
      ier = 6
      neval = 0
      last = 0
      result = 0.0d+00
      abserr = 0.0d+00
      if(leniw.lt.(3*npts2-2).or.lenw.lt.(leniw*2-npts2).or.npts2.lt.2)
     *  go to 10
c
c         prepare call for dqagpe.
c
      limit = (leniw-npts2)/2
      l1 = limit+1
      l2 = limit+l1
      l3 = limit+l2
      l4 = limit+l3
c
      call dqagpe(f,a,b,npts2,points,epsabs,epsrel,limit,result,abserr,
     *  neval,ier,work(1),work(l1),work(l2),work(l3),work(l4),
     *  iwork(1),iwork(l1),iwork(l2),last)
c
c         call error handler if necessary.
c
      lvl = 0
10    if(ier.eq.6) lvl = 1
      if(ier.ne.0) call xerror('abnormal return from dqagp',26,ier,lvl)
      return
      end