File: dqagse.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (444 lines) | stat: -rw-r--r-- 17,381 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
      subroutine dqagse(f,a,b,epsabs,epsrel,limit,result,abserr,neval,
     *   ier,alist,blist,rlist,elist,iord,last)
c***begin prologue  dqagse
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a1a1
c***keywords  automatic integrator, general-purpose,
c             (end point) singularities, extrapolation,
c             globally adaptive
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose  the routine calculates an approximation result to a given
c            definite integral i = integral of f over (a,b),
c            hopefully satisfying following claim for accuracy
c            abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c        computation of a definite integral
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c            limit  - integer
c                     gives an upperbound on the number of subintervals
c                     in the partition of (a,b)
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the requested
c                             accuracy has been achieved.
c                     ier.gt.0 abnormal termination of the routine
c                             the estimates for integral and error are
c                             less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                         = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more sub-
c                             divisions by increasing the value of limit
c                             (and taking the according dimension
c                             adjustments into account). however, if
c                             this yields no improvement it is advised
c                             to analyze the integrand in order to
c                             determine the integration difficulties. if
c                             the position of a local difficulty can be
c                             determined (e.g. singularity,
c                             discontinuity within the interval) one
c                             will probably gain from splitting up the
c                             interval at this point and calling the
c                             integrator on the subranges. if possible,
c                             an appropriate special-purpose integrator
c                             should be used, which is designed for
c                             handling the type of difficulty involved.
c                         = 2 the occurrence of roundoff error is detec-
c                             ted, which prevents the requested
c                             tolerance from being achieved.
c                             the error may be under-estimated.
c                         = 3 extremely bad integrand behaviour
c                             occurs at some points of the integration
c                             interval.
c                         = 4 the algorithm does not converge.
c                             roundoff error is detected in the
c                             extrapolation table.
c                             it is presumed that the requested
c                             tolerance cannot be achieved, and that the
c                             returned result is the best which can be
c                             obtained.
c                         = 5 the integral is probably divergent, or
c                             slowly convergent. it must be noted that
c                             divergence can occur with any other value
c                             of ier.
c                         = 6 the input is invalid, because
c                             epsabs.le.0 and
c                             epsrel.lt.max(50*rel.mach.acc.,0.5d-28).
c                             result, abserr, neval, last, rlist(1),
c                             iord(1) and elist(1) are set to zero.
c                             alist(1) and blist(1) are set to a and b
c                             respectively.
c
c            alist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the left end points
c                     of the subintervals in the partition of the
c                     given integration range (a,b)
c
c            blist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the right end points
c                     of the subintervals in the partition of the given
c                     integration range (a,b)
c
c            rlist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the integral
c                     approximations on the subintervals
c
c            elist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the moduli of the
c                     absolute error estimates on the subintervals
c
c            iord   - integer
c                     vector of dimension at least limit, the first k
c                     elements of which are pointers to the
c                     error estimates over the subintervals,
c                     such that elist(iord(1)), ..., elist(iord(k))
c                     form a decreasing sequence, with k = last
c                     if last.le.(limit/2+2), and k = limit+1-last
c                     otherwise
c
c            last   - integer
c                     number of subintervals actually produced in the
c                     subdivision process
c
c***references  (none)
c***routines called  d1mach,dqelg,dqk21,dqpsrt
c***end prologue  dqagse
c
      double precision a,abseps,abserr,alist,area,area1,area12,area2,a1,
     *  a2,b,blist,b1,b2,correc,dabs,defabs,defab1,defab2,d1mach,dmax1,
     *  dres,elist,epmach,epsabs,epsrel,erlarg,erlast,errbnd,errmax,
     *  error1,error2,erro12,errsum,ertest,f,oflow,resabs,reseps,result,
     *  res3la,rlist,rlist2,small,uflow
      integer id,ier,ierro,iord,iroff1,iroff2,iroff3,jupbnd,k,ksgn,
     *  ktmin,last,limit,maxerr,neval,nres,nrmax,numrl2
      logical extrap,noext
c
      dimension alist(limit),blist(limit),elist(limit),iord(limit),
     * res3la(3),rlist(limit),rlist2(52)
c
      external f
c
c            the dimension of rlist2 is determined by the value of
c            limexp in subroutine dqelg (rlist2 should be of dimension
c            (limexp+2) at least).
c
c            list of major variables
c            -----------------------
c
c           alist     - list of left end points of all subintervals
c                       considered up to now
c           blist     - list of right end points of all subintervals
c                       considered up to now
c           rlist(i)  - approximation to the integral over
c                       (alist(i),blist(i))
c           rlist2    - array of dimension at least limexp+2 containing
c                       the part of the epsilon table which is still
c                       needed for further computations
c           elist(i)  - error estimate applying to rlist(i)
c           maxerr    - pointer to the interval with largest error
c                       estimate
c           errmax    - elist(maxerr)
c           erlast    - error on the interval currently subdivided
c                       (before that subdivision has taken place)
c           area      - sum of the integrals over the subintervals
c           errsum    - sum of the errors over the subintervals
c           errbnd    - requested accuracy max(epsabs,epsrel*
c                       abs(result))
c           *****1    - variable for the left interval
c           *****2    - variable for the right interval
c           last      - index for subdivision
c           nres      - number of calls to the extrapolation routine
c           numrl2    - number of elements currently in rlist2. if an
c                       appropriate approximation to the compounded
c                       integral has been obtained it is put in
c                       rlist2(numrl2) after numrl2 has been increased
c                       by one.
c           small     - length of the smallest interval considered up
c                       to now, multiplied by 1.5
c           erlarg    - sum of the errors over the intervals larger
c                       than the smallest interval considered up to now
c           extrap    - logical variable denoting that the routine is
c                       attempting to perform extrapolation i.e. before
c                       subdividing the smallest interval we try to
c                       decrease the value of erlarg.
c           noext     - logical variable denoting that extrapolation
c                       is no longer allowed (true value)
c
c            machine dependent constants
c            ---------------------------
c
c           epmach is the largest relative spacing.
c           uflow is the smallest positive magnitude.
c           oflow is the largest positive magnitude.
c
c***first executable statement  dqagse
      epmach = d1mach(4)
c
c            test on validity of parameters
c            ------------------------------
      ier = 0
      neval = 0
      last = 0
      result = 0.0d+00
      abserr = 0.0d+00
      alist(1) = a
      blist(1) = b
      rlist(1) = 0.0d+00
      elist(1) = 0.0d+00
      if(epsabs.le.0.0d+00.and.epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))
     *   ier = 6
      if(ier.eq.6) go to 999
c
c           first approximation to the integral
c           -----------------------------------
c
      uflow = d1mach(1)
      oflow = d1mach(2)
      ierro = 0
      call dqk21(f,a,b,result,abserr,defabs,resabs)
c
c           test on accuracy.
c
      dres = dabs(result)
      errbnd = dmax1(epsabs,epsrel*dres)
      last = 1
      rlist(1) = result
      elist(1) = abserr
      iord(1) = 1
      if(abserr.le.1.0d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
      if(limit.eq.1) ier = 1
      if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs).or.
     *  abserr.eq.0.0d+00) go to 140
c
c           initialization
c           --------------
c
      rlist2(1) = result
      errmax = abserr
      maxerr = 1
      area = result
      errsum = abserr
      abserr = oflow
      nrmax = 1
      nres = 0
      numrl2 = 2
      ktmin = 0
      extrap = .false.
      noext = .false.
      iroff1 = 0
      iroff2 = 0
      iroff3 = 0
      ksgn = -1
      if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1
c
c           main do-loop
c           ------------
c
      do 90 last = 2,limit
c
c           bisect the subinterval with the nrmax-th largest error
c           estimate.
c
        a1 = alist(maxerr)
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
        a2 = b1
        b2 = blist(maxerr)
        erlast = errmax
        call dqk21(f,a1,b1,area1,error1,resabs,defab1)
        call dqk21(f,a2,b2,area2,error2,resabs,defab2)
c
c           improve previous approximations to integral
c           and error and test for accuracy.
c
        area12 = area1+area2
        erro12 = error1+error2
        errsum = errsum+erro12-errmax
        area = area+area12-rlist(maxerr)
        if(defab1.eq.error1.or.defab2.eq.error2) go to 15
        if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12)
     *  .or.erro12.lt.0.99d+00*errmax) go to 10
        if(extrap) iroff2 = iroff2+1
        if(.not.extrap) iroff1 = iroff1+1
   10   if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1
   15   rlist(maxerr) = area1
        rlist(last) = area2
        errbnd = dmax1(epsabs,epsrel*dabs(area))
c
c           test for roundoff error and eventually set error flag.
c
        if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2
        if(iroff2.ge.5) ierro = 3
c
c           set error flag in the case that the number of subintervals
c           equals limit.
c
        if(last.eq.limit) ier = 1
c
c           set error flag in the case of bad integrand behaviour
c           at a point of the integration range.
c
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)*
     *  (dabs(a2)+0.1d+04*uflow)) ier = 4
c
c           append the newly-created intervals to the list.
c
        if(error2.gt.error1) go to 20
        alist(last) = a2
        blist(maxerr) = b1
        blist(last) = b2
        elist(maxerr) = error1
        elist(last) = error2
        go to 30
   20   alist(maxerr) = a2
        alist(last) = a1
        blist(last) = b1
        rlist(maxerr) = area2
        rlist(last) = area1
        elist(maxerr) = error2
        elist(last) = error1
c
c           call subroutine dqpsrt to maintain the descending ordering
c           in the list of error estimates and select the subinterval
c           with nrmax-th largest error estimate (to be bisected next).
c
   30   call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
        if(errsum.le.errbnd) go to 115
c ***jump out of do-loop
        if(ier.ne.0) go to 100
        if(last.eq.2) go to 80
        if(noext) go to 90
        erlarg = erlarg-erlast
        if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12
        if(extrap) go to 40
c
c           test whether the interval to be bisected next is the
c           smallest interval.
c
        if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
        extrap = .true.
        nrmax = 2
   40   if(ierro.eq.3.or.erlarg.le.ertest) go to 60
c
c           the smallest interval has the largest error.
c           before bisecting decrease the sum of the errors over the
c           larger intervals (erlarg) and perform extrapolation.
c
        id = nrmax
        jupbnd = last
        if(last.gt.(2+limit/2)) jupbnd = limit+3-last
        do 50 k = id,jupbnd
          maxerr = iord(nrmax)
          errmax = elist(maxerr)
c ***jump out of do-loop
          if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
          nrmax = nrmax+1
   50   continue
c
c           perform extrapolation.
c
   60   numrl2 = numrl2+1
        rlist2(numrl2) = area
        call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres)
        ktmin = ktmin+1
        if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5
        if(abseps.ge.abserr) go to 70
        ktmin = 0
        abserr = abseps
        result = reseps
        correc = erlarg
        ertest = dmax1(epsabs,epsrel*dabs(reseps))
c ***jump out of do-loop
        if(abserr.le.ertest) go to 100
c
c           prepare bisection of the smallest interval.
c
   70   if(numrl2.eq.1) noext = .true.
        if(ier.eq.5) go to 100
        maxerr = iord(1)
        errmax = elist(maxerr)
        nrmax = 1
        extrap = .false.
        small = small*0.5d+00
        erlarg = errsum
        go to 90
   80   small = dabs(b-a)*0.375d+00
        erlarg = errsum
        ertest = errbnd
        rlist2(2) = area
   90 continue
c
c           set final result and error estimate.
c           ------------------------------------
c
  100 if(abserr.eq.oflow) go to 115
      if(ier+ierro.eq.0) go to 110
      if(ierro.eq.3) abserr = abserr+correc
      if(ier.eq.0) ier = 3
      if(result.ne.0.0d+00.and.area.ne.0.0d+00) go to 105
      if(abserr.gt.errsum) go to 115
      if(area.eq.0.0d+00) go to 130
      go to 110
  105 if(abserr/dabs(result).gt.errsum/dabs(area)) go to 115
c
c           test on divergence.
c
  110 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le.
     * defabs*0.1d-01) go to 130
      if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03
     * .or.errsum.gt.dabs(area)) ier = 6
      go to 130
c
c           compute global integral sum.
c
  115 result = 0.0d+00
      do 120 k = 1,last
         result = result+rlist(k)
  120 continue
      abserr = errsum
  130 if(ier.gt.2) ier = ier-1
  140 neval = 42*last-21
  999 return
      end