1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
subroutine dqawce(f,a,b,c,epsabs,epsrel,limit,result,abserr,neval,
* ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqawce
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1,j4
c***keywords automatic integrator, special-purpose,
c cauchy principal value, clenshaw-curtis method
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c*** purpose the routine calculates an approximation result to a
c cauchy principal value i = integral of f*w over (a,b)
c (w(x) = 1/(x-c), (c.ne.a, c.ne.b), hopefully satisfying
c following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i))
c***description
c
c computation of a cauchy principal value
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c c - double precision
c parameter in the weight function, c.ne.a, c.ne.b
c if c = a or c = b, the routine will end with
c ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upper bound on the number of subintervals
c in the partition of (a,b), limit.ge.1
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more sub-
c divisions by increasing the value of
c limit. however, if this yields no
c improvement it is advised to analyze the
c the integrand, in order to determine the
c the integration difficulties. if the
c position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling
c appropriate integrators on the subranges.
c = 2 the occurrence of roundoff error is detec-
c ted, which prevents the requested
c tolerance from being achieved.
c = 3 extremely bad integrand behaviour
c occurs at some interior points of
c the integration interval.
c = 6 the input is invalid, because
c c = a or c = b or
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or limit.lt.1.
c result, abserr, neval, rlist(1), elist(1),
c iord(1) and last are set to zero. alist(1)
c and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension limit, the first last
c elements of which are the moduli of the absolute
c error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the error
c estimates over the subintervals, so that
c elist(iord(1)), ..., elist(iord(k)) with k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise, form a decreasing sequence
c
c last - integer
c number of subintervals actually produced in
c the subdivision process
c
c***references (none)
c***routines called d1mach,dqc25c,dqpsrt
c***end prologue dqawce
c
double precision a,aa,abserr,alist,area,area1,area12,area2,a1,a2,
* b,bb,blist,b1,b2,c,dabs,dmax1,d1mach,elist,epmach,epsabs,epsrel,
* errbnd,errmax,error1,erro12,error2,errsum,f,result,rlist,uflow
integer ier,iord,iroff1,iroff2,k,krule,last,limit,maxerr,nev,
* neval,nrmax
c
dimension alist(limit),blist(limit),rlist(limit),elist(limit),
* iord(limit)
c
external f
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqawce
epmach = d1mach(4)
uflow = d1mach(1)
c
c
c test on validity of parameters
c ------------------------------
c
ier = 6
neval = 0
last = 0
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
result = 0.0d+00
abserr = 0.0d+00
if(c.eq.a.or.c.eq.b.or.(epsabs.le.0.0d+00.and
* .epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))) go to 999
c
c first approximation to the integral
c -----------------------------------
c
aa=a
bb=b
if (a.le.b) go to 10
aa=b
bb=a
10 ier=0
krule = 1
call dqc25c(f,aa,bb,c,result,abserr,krule,neval)
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
alist(1) = a
blist(1) = b
c
c test on accuracy
c
errbnd = dmax1(epsabs,epsrel*dabs(result))
if(limit.eq.1) ier = 1
if(abserr.lt.dmin1(0.1d-01*dabs(result),errbnd)
* .or.ier.eq.1) go to 70
c
c initialization
c --------------
c
alist(1) = aa
blist(1) = bb
rlist(1) = result
errmax = abserr
maxerr = 1
area = result
errsum = abserr
nrmax = 1
iroff1 = 0
iroff2 = 0
c
c main do-loop
c ------------
c
do 40 last = 2,limit
c
c bisect the subinterval with nrmax-th largest
c error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
b2 = blist(maxerr)
if(c.le.b1.and.c.gt.a1) b1 = 0.5d+00*(c+b2)
if(c.gt.b1.and.c.lt.b2) b1 = 0.5d+00*(a1+c)
a2 = b1
krule = 2
call dqc25c(f,a1,b1,c,area1,error1,krule,nev)
neval = neval+nev
call dqc25c(f,a2,b2,c,area2,error2,krule,nev)
neval = neval+nev
c
c improve previous approximations to integral
c and error and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(dabs(rlist(maxerr)-area12).lt.0.1d-04*dabs(area12)
* .and.erro12.ge.0.99d+00*errmax.and.krule.eq.0)
* iroff1 = iroff1+1
if(last.gt.10.and.erro12.gt.errmax.and.krule.eq.0)
* iroff2 = iroff2+1
rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
if(errsum.le.errbnd) go to 15
c
c test for roundoff error and eventually set error flag.
c
if(iroff1.ge.6.and.iroff2.gt.20) ier = 2
c
c set error flag in the case that number of interval
c bisections exceeds limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)
* *(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c append the newly-created intervals to the list.
c
15 if(error2.gt.error1) go to 20
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 30
20 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with nrmax-th largest error estimate (to be bisected next).
c
30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(ier.ne.0.or.errsum.le.errbnd) go to 50
40 continue
c
c compute final result.
c ---------------------
c
50 result = 0.0d+00
do 60 k=1,last
result = result+rlist(k)
60 continue
abserr = errsum
70 if (aa.eq.b) result=-result
999 return
end
|