File: dqawce.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (326 lines) | stat: -rw-r--r-- 12,260 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
      subroutine dqawce(f,a,b,c,epsabs,epsrel,limit,result,abserr,neval,
     *   ier,alist,blist,rlist,elist,iord,last)
c***begin prologue  dqawce
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a2a1,j4
c***keywords  automatic integrator, special-purpose,
c             cauchy principal value, clenshaw-curtis method
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***  purpose  the routine calculates an approximation result to a
c              cauchy principal value i = integral of f*w over (a,b)
c              (w(x) = 1/(x-c), (c.ne.a, c.ne.b), hopefully satisfying
c              following claim for accuracy
c              abs(i-result).le.max(epsabs,epsrel*abs(i))
c***description
c
c        computation of a cauchy principal value
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration
c
c            c      - double precision
c                     parameter in the weight function, c.ne.a, c.ne.b
c                     if c = a or c = b, the routine will end with
c                     ier = 6.
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c            limit  - integer
c                     gives an upper bound on the number of subintervals
c                     in the partition of (a,b), limit.ge.1
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the requested
c                             accuracy has been achieved.
c                     ier.gt.0 abnormal termination of the routine
c                             the estimates for integral and error are
c                             less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                     ier = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more sub-
c                             divisions by increasing the value of
c                             limit. however, if this yields no
c                             improvement it is advised to analyze the
c                             the integrand, in order to determine the
c                             the integration difficulties. if the
c                             position of a local difficulty can be
c                             determined (e.g. singularity,
c                             discontinuity within the interval) one
c                             will probably gain from splitting up the
c                             interval at this point and calling
c                             appropriate integrators on the subranges.
c                         = 2 the occurrence of roundoff error is detec-
c                             ted, which prevents the requested
c                             tolerance from being achieved.
c                         = 3 extremely bad integrand behaviour
c                             occurs at some interior points of
c                             the integration interval.
c                         = 6 the input is invalid, because
c                             c = a or c = b or
c                             (epsabs.le.0 and
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c                             or limit.lt.1.
c                             result, abserr, neval, rlist(1), elist(1),
c                             iord(1) and last are set to zero. alist(1)
c                             and blist(1) are set to a and b
c                             respectively.
c
c            alist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the left
c                      end points of the subintervals in the partition
c                      of the given integration range (a,b)
c
c            blist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the right
c                      end points of the subintervals in the partition
c                      of the given integration range (a,b)
c
c            rlist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the integral
c                      approximations on the subintervals
c
c            elist   - double precision
c                      vector of dimension limit, the first  last
c                      elements of which are the moduli of the absolute
c                      error estimates on the subintervals
c
c            iord    - integer
c                      vector of dimension at least limit, the first k
c                      elements of which are pointers to the error
c                      estimates over the subintervals, so that
c                      elist(iord(1)), ..., elist(iord(k)) with k = last
c                      if last.le.(limit/2+2), and k = limit+1-last
c                      otherwise, form a decreasing sequence
c
c            last    - integer
c                      number of subintervals actually produced in
c                      the subdivision process
c
c***references  (none)
c***routines called  d1mach,dqc25c,dqpsrt
c***end prologue  dqawce
c
      double precision a,aa,abserr,alist,area,area1,area12,area2,a1,a2,
     *  b,bb,blist,b1,b2,c,dabs,dmax1,d1mach,elist,epmach,epsabs,epsrel,
     *  errbnd,errmax,error1,erro12,error2,errsum,f,result,rlist,uflow
      integer ier,iord,iroff1,iroff2,k,krule,last,limit,maxerr,nev,
     *  neval,nrmax
c
      dimension alist(limit),blist(limit),rlist(limit),elist(limit),
     *  iord(limit)
c
      external f
c
c            list of major variables
c            -----------------------
c
c           alist     - list of left end points of all subintervals
c                       considered up to now
c           blist     - list of right end points of all subintervals
c                       considered up to now
c           rlist(i)  - approximation to the integral over
c                       (alist(i),blist(i))
c           elist(i)  - error estimate applying to rlist(i)
c           maxerr    - pointer to the interval with largest
c                       error estimate
c           errmax    - elist(maxerr)
c           area      - sum of the integrals over the subintervals
c           errsum    - sum of the errors over the subintervals
c           errbnd    - requested accuracy max(epsabs,epsrel*
c                       abs(result))
c           *****1    - variable for the left subinterval
c           *****2    - variable for the right subinterval
c           last      - index for subdivision
c
c
c            machine dependent constants
c            ---------------------------
c
c           epmach is the largest relative spacing.
c           uflow is the smallest positive magnitude.
c
c***first executable statement  dqawce
      epmach = d1mach(4)
      uflow = d1mach(1)
c
c
c           test on validity of parameters
c           ------------------------------
c
      ier = 6
      neval = 0
      last = 0
      alist(1) = a
      blist(1) = b
      rlist(1) = 0.0d+00
      elist(1) = 0.0d+00
      iord(1) = 0
      result = 0.0d+00
      abserr = 0.0d+00
      if(c.eq.a.or.c.eq.b.or.(epsabs.le.0.0d+00.and
     *  .epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))) go to 999
c
c           first approximation to the integral
c           -----------------------------------
c
      aa=a
      bb=b
      if (a.le.b) go to 10
      aa=b
      bb=a
10    ier=0
      krule = 1
      call dqc25c(f,aa,bb,c,result,abserr,krule,neval)
      last = 1
      rlist(1) = result
      elist(1) = abserr
      iord(1) = 1
      alist(1) = a
      blist(1) = b
c
c           test on accuracy
c
      errbnd = dmax1(epsabs,epsrel*dabs(result))
      if(limit.eq.1) ier = 1
      if(abserr.lt.dmin1(0.1d-01*dabs(result),errbnd)
     *  .or.ier.eq.1) go to 70
c
c           initialization
c           --------------
c
      alist(1) = aa
      blist(1) = bb
      rlist(1) = result
      errmax = abserr
      maxerr = 1
      area = result
      errsum = abserr
      nrmax = 1
      iroff1 = 0
      iroff2 = 0
c
c           main do-loop
c           ------------
c
      do 40 last = 2,limit
c
c           bisect the subinterval with nrmax-th largest
c           error estimate.
c
        a1 = alist(maxerr)
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
        b2 = blist(maxerr)
        if(c.le.b1.and.c.gt.a1) b1 = 0.5d+00*(c+b2)
        if(c.gt.b1.and.c.lt.b2) b1 = 0.5d+00*(a1+c)
        a2 = b1
        krule = 2
        call dqc25c(f,a1,b1,c,area1,error1,krule,nev)
        neval = neval+nev
        call dqc25c(f,a2,b2,c,area2,error2,krule,nev)
        neval = neval+nev
c
c           improve previous approximations to integral
c           and error and test for accuracy.
c
        area12 = area1+area2
        erro12 = error1+error2
        errsum = errsum+erro12-errmax
        area = area+area12-rlist(maxerr)
        if(dabs(rlist(maxerr)-area12).lt.0.1d-04*dabs(area12)
     *    .and.erro12.ge.0.99d+00*errmax.and.krule.eq.0)
     *    iroff1 = iroff1+1
        if(last.gt.10.and.erro12.gt.errmax.and.krule.eq.0)
     *    iroff2 = iroff2+1
        rlist(maxerr) = area1
        rlist(last) = area2
        errbnd = dmax1(epsabs,epsrel*dabs(area))
        if(errsum.le.errbnd) go to 15
c
c           test for roundoff error and eventually set error flag.
c
        if(iroff1.ge.6.and.iroff2.gt.20) ier = 2
c
c           set error flag in the case that number of interval
c           bisections exceeds limit.
c
        if(last.eq.limit) ier = 1
c
c           set error flag in the case of bad integrand behaviour
c           at a point of the integration range.
c
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)
     *    *(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c           append the newly-created intervals to the list.
c
   15   if(error2.gt.error1) go to 20
        alist(last) = a2
        blist(maxerr) = b1
        blist(last) = b2
        elist(maxerr) = error1
        elist(last) = error2
        go to 30
   20   alist(maxerr) = a2
        alist(last) = a1
        blist(last) = b1
        rlist(maxerr) = area2
        rlist(last) = area1
        elist(maxerr) = error2
        elist(last) = error1
c
c           call subroutine dqpsrt to maintain the descending ordering
c           in the list of error estimates and select the subinterval
c           with nrmax-th largest error estimate (to be bisected next).
c
   30    call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
        if(ier.ne.0.or.errsum.le.errbnd) go to 50
   40 continue
c
c           compute final result.
c           ---------------------
c
   50 result = 0.0d+00
      do 60 k=1,last
        result = result+rlist(k)
   60 continue
      abserr = errsum
   70 if (aa.eq.b) result=-result
  999 return
      end