1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
subroutine dqawf(f,a,omega,integr,epsabs,result,abserr,neval,ier,
* limlst,lst,leniw,maxp1,lenw,iwork,work)
c***begin prologue dqawf
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a1
c***keywords automatic integrator, special-purpose,fourier
c integral, integration between zeros with dqawoe,
c convergence acceleration with dqelg
c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c fourier integral i=integral of f(x)*w(x) over (a,infinity)
c where w(x) = cos(omega*x) or w(x) = sin(omega*x).
c hopefully satisfying following claim for accuracy
c abs(i-result).le.epsabs.
c***description
c
c computation of fourier integrals
c standard fortran subroutine
c double precision version
c
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c omega - double precision
c parameter in the integrand weight function
c
c integr - integer
c indicates which of the weight functions is used
c integr = 1 w(x) = cos(omega*x)
c integr = 2 w(x) = sin(omega*x)
c if integr.ne.1.and.integr.ne.2, the routine
c will end with ier = 6.
c
c epsabs - double precision
c absolute accuracy requested, epsabs.gt.0.
c if epsabs.le.0, the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine.
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c if omega.ne.0
c ier = 1 maximum number of cycles allowed
c has been achieved, i.e. of subintervals
c (a+(k-1)c,a+kc) where
c c = (2*int(abs(omega))+1)*pi/abs(omega),
c for k = 1, 2, ..., lst.
c one can allow more cycles by increasing
c the value of limlst (and taking the
c according dimension adjustments into
c account). examine the array iwork which
c contains the error flags on the cycles, in
c order to look for eventual local
c integration difficulties.
c if the position of a local difficulty
c can be determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling
c appropriate integrators on the subranges.
c = 4 the extrapolation table constructed for
c convergence accelaration of the series
c formed by the integral contributions over
c the cycles, does not converge to within
c the requested accuracy.
c as in the case of ier = 1, it is advised
c to examine the array iwork which contains
c the error flags on the cycles.
c = 6 the input is invalid because
c (integr.ne.1 and integr.ne.2) or
c epsabs.le.0 or limlst.lt.1 or
c leniw.lt.(limlst+2) or maxp1.lt.1 or
c lenw.lt.(leniw*2+maxp1*25).
c result, abserr, neval, lst are set to
c zero.
c = 7 bad integrand behaviour occurs within
c one or more of the cycles. location and
c type of the difficulty involved can be
c determined from the first lst elements of
c vector iwork. here lst is the number of
c cycles actually needed (see below).
c iwork(k) = 1 the maximum number of
c subdivisions (=(leniw-limlst)
c /2) has been achieved on the
c k th cycle.
c = 2 occurrence of roundoff error
c is detected and prevents the
c tolerance imposed on the k th
c cycle, from being achieved
c on this cycle.
c = 3 extremely bad integrand
c behaviour occurs at some
c points of the k th cycle.
c = 4 the integration procedure
c over the k th cycle does
c not converge (to within the
c required accuracy) due to
c roundoff in the extrapolation
c procedure invoked on this
c cycle. it is assumed that the
c result on this interval is
c the best which can be
c obtained.
c = 5 the integral over the k th
c cycle is probably divergent
c or slowly convergent. it must
c be noted that divergence can
c occur with any other value of
c iwork(k).
c if omega = 0 and integr = 1,
c the integral is calculated by means of dqagie,
c and ier = iwork(1) (with meaning as described
c for iwork(k),k = 1).
c
c dimensioning parameters
c limlst - integer
c limlst gives an upper bound on the number of
c cycles, limlst.ge.3.
c if limlst.lt.3, the routine will end with ier = 6.
c
c lst - integer
c on return, lst indicates the number of cycles
c actually needed for the integration.
c if omega = 0, then lst is set to 1.
c
c leniw - integer
c dimensioning parameter for iwork. on entry,
c (leniw-limlst)/2 equals the maximum number of
c subintervals allowed in the partition of each
c cycle, leniw.ge.(limlst+2).
c if leniw.lt.(limlst+2), the routine will end with
c ier = 6.
c
c maxp1 - integer
c maxp1 gives an upper bound on the number of
c chebyshev moments which can be stored, i.e. for
c the intervals of lengths abs(b-a)*2**(-l),
c l = 0,1, ..., maxp1-2, maxp1.ge.1.
c if maxp1.lt.1, the routine will end with ier = 6.
c lenw - integer
c dimensioning parameter for work
c lenw must be at least leniw*2+maxp1*25.
c if lenw.lt.(leniw*2+maxp1*25), the routine will
c end with ier = 6.
c
c work arrays
c iwork - integer
c vector of dimension at least leniw
c on return, iwork(k) for k = 1, 2, ..., lst
c contain the error flags on the cycles.
c
c work - double precision
c vector of dimension at least
c on return,
c work(1), ..., work(lst) contain the integral
c approximations over the cycles,
c work(limlst+1), ..., work(limlst+lst) contain
c the error extimates over the cycles.
c further elements of work have no specific
c meaning for the user.
c
c***references (none)
c***routines called dqawfe,xerror
c***end prologue dqawf
c
double precision a,abserr,epsabs,f,omega,result,work
integer ier,integr,iwork,last,leniw,lenw,limit,limlst,ll2,lvl,
* lst,l1,l2,l3,l4,l5,l6,maxp1,neval
c
dimension iwork(leniw),work(lenw)
c
external f
c
c check validity of limlst, leniw, maxp1 and lenw.
c
c***first executable statement dqawf
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limlst.lt.3.or.leniw.lt.(limlst+2).or.maxp1.lt.1.or.lenw.lt.
* (leniw*2+maxp1*25)) go to 10
c
c prepare call for dqawfe
c
limit = (leniw-limlst)/2
l1 = limlst+1
l2 = limlst+l1
l3 = limit+l2
l4 = limit+l3
l5 = limit+l4
l6 = limit+l5
ll2 = limit+l1
call dqawfe(f,a,omega,integr,epsabs,limlst,limit,maxp1,result,
* abserr,neval,ier,work(1),work(l1),iwork(1),lst,work(l2),
* work(l3),work(l4),work(l5),iwork(l1),iwork(ll2),work(l6))
c
c call error handler if necessary
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) call xerror('abnormal return from dqawf',26,ier,lvl)
return
end
|