1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
subroutine dqawo(f,a,b,omega,integr,epsabs,epsrel,result,abserr,
* neval,ier,leniw,maxp1,lenw,last,iwork,work)
c***begin prologue dqawo
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1
c***keywords automatic integrator, special-purpose,
c integrand with oscillatory cos or sin factor,
c clenshaw-curtis method, (end point) singularities,
c extrapolation, globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i=integral of f(x)*w(x) over (a,b)
c where w(x) = cos(omega*x)
c or w(x) = sin(omega*x),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of oscillatory integrals
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the function
c f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c omega - double precision
c parameter in the integrand weight function
c
c integr - integer
c indicates which of the weight functions is used
c integr = 1 w(x) = cos(omega*x)
c integr = 2 w(x) = sin(omega*x)
c if integr.ne.1.and.integr.ne.2, the routine will
c end with ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine.
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c (= leniw/2) has been achieved. one can
c allow more subdivisions by increasing the
c value of leniw (and taking the according
c dimension adjustments into account).
c however, if this yields no improvement it
c is advised to analyze the integrand in
c order to determine the integration
c difficulties. if the position of a local
c difficulty can be determined (e.g.
c singularity, discontinuity within the
c interval) one will probably gain from
c splitting up the interval at this point
c and calling the integrator on the
c subranges. if possible, an appropriate
c special-purpose integrator should be used
c which is designed for handling the type of
c difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some interior points of the
c integration interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table. it is presumed that
c the requested tolerance cannot be achieved
c due to roundoff in the extrapolation
c table, and that the returned result is
c the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or (integr.ne.1 and integr.ne.2),
c or leniw.lt.2 or maxp1.lt.1 or
c lenw.lt.leniw*2+maxp1*25.
c result, abserr, neval, last are set to
c zero. except when leniw, maxp1 or lenw are
c invalid, work(limit*2+1), work(limit*3+1),
c iwork(1), iwork(limit+1) are set to zero,
c work(1) is set to a and work(limit+1) to
c b.
c
c dimensioning parameters
c leniw - integer
c dimensioning parameter for iwork.
c leniw/2 equals the maximum number of subintervals
c allowed in the partition of the given integration
c interval (a,b), leniw.ge.2.
c if leniw.lt.2, the routine will end with ier = 6.
c
c maxp1 - integer
c gives an upper bound on the number of chebyshev
c moments which can be stored, i.e. for the
c intervals of lengths abs(b-a)*2**(-l),
c l=0,1, ..., maxp1-2, maxp1.ge.1
c if maxp1.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least leniw*2+maxp1*25.
c if lenw.lt.(leniw*2+maxp1*25), the routine will
c end with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least leniw
c on return, the first k elements of which contain
c pointers to the error estimates over the
c subintervals, such that work(limit*3+iwork(1)), ..
c work(limit*3+iwork(k)) form a decreasing
c sequence, with limit = lenw/2 , and k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise.
c furthermore, iwork(limit+1), ..., iwork(limit+
c last) indicate the subdivision levels of the
c subintervals, such that iwork(limit+i) = l means
c that the subinterval numbered i is of length
c abs(b-a)*2**(1-l).
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ..., work(limit*2+last) contain
c the integral approximations over the
c subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the error estimates.
c work(limit*4+1), ..., work(limit*4+maxp1*25)
c provide space for storing the chebyshev moments.
c note that limit = lenw/2.
c
c***references (none)
c***routines called dqawoe,xerror
c***end prologue dqawo
c
double precision a,abserr,b,epsabs,epsrel,f,omega,result,work
integer ier,integr,iwork,last,limit,lenw,leniw,lvl,l1,l2,l3,l4,
* maxp1,momcom,neval
c
dimension iwork(leniw),work(lenw)
c
external f
c
c check validity of leniw, maxp1 and lenw.
c
c***first executable statement dqawo
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(leniw.lt.2.or.maxp1.lt.1.or.lenw.lt.(leniw*2+maxp1*25))
* go to 10
c
c prepare call for dqawoe
c
limit = leniw/2
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
l4 = limit+l3
call dqawoe(f,a,b,omega,integr,epsabs,epsrel,limit,1,maxp1,result,
* abserr,neval,ier,last,work(1),work(l1),work(l2),work(l3),
* iwork(1),iwork(l1),momcom,work(l4))
c
c call error handler if necessary
c
lvl = 0
10 if(ier.eq.6) lvl = 0
if(ier.ne.0) call xerror('abnormal return from dqawo',26,ier,lvl)
return
end
|