File: dqawoe.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (531 lines) | stat: -rw-r--r-- 21,404 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
      subroutine dqawoe (f,a,b,omega,integr,epsabs,epsrel,limit,icall,
     *  maxp1,result,abserr,neval,ier,last,alist,blist,rlist,elist,iord,
     *   nnlog,momcom,chebmo)
c***begin prologue  dqawoe
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a2a1
c***keywords  automatic integrator, special-purpose,
c             integrand with oscillatory cos or sin factor,
c             clenshaw-curtis method, (end point) singularities,
c             extrapolation, globally adaptive
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose  the routine calculates an approximation result to a given
c            definite integral
c            i = integral of f(x)*w(x) over (a,b)
c            where w(x) = cos(omega*x) or w(x)=sin(omega*x),
c            hopefully satisfying following claim for accuracy
c            abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c        computation of oscillatory integrals
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration
c
c            omega  - double precision
c                     parameter in the integrand weight function
c
c            integr - integer
c                     indicates which of the weight functions is to be
c                     used
c                     integr = 1      w(x) = cos(omega*x)
c                     integr = 2      w(x) = sin(omega*x)
c                     if integr.ne.1 and integr.ne.2, the routine
c                     will end with ier = 6.
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c            limit  - integer
c                     gives an upper bound on the number of subdivisions
c                     in the partition of (a,b), limit.ge.1.
c
c            icall  - integer
c                     if dqawoe is to be used only once, icall must
c                     be set to 1.  assume that during this call, the
c                     chebyshev moments (for clenshaw-curtis integration
c                     of degree 24) have been computed for intervals of
c                     lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1.
c                     if icall.gt.1 this means that dqawoe has been
c                     called twice or more on intervals of the same
c                     length abs(b-a). the chebyshev moments already
c                     computed are then re-used in subsequent calls.
c                     if icall.lt.1, the routine will end with ier = 6.
c
c            maxp1  - integer
c                     gives an upper bound on the number of chebyshev
c                     moments which can be stored, i.e. for the
c                     intervals of lenghts abs(b-a)*2**(-l),
c                     l=0,1, ..., maxp1-2, maxp1.ge.1.
c                     if maxp1.lt.1, the routine will end with ier = 6.
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the
c                             requested accuracy has been achieved.
c                   - ier.gt.0 abnormal termination of the routine.
c                             the estimates for integral and error are
c                             less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                     ier = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more
c                             subdivisions by increasing the value of
c                             limit (and taking according dimension
c                             adjustments into account). however, if
c                             this yields no improvement it is advised
c                             to analyze the integrand, in order to
c                             determine the integration difficulties.
c                             if the position of a local difficulty can
c                             be determined (e.g. singularity,
c                             discontinuity within the interval) one
c                             will probably gain from splitting up the
c                             interval at this point and calling the
c                             integrator on the subranges. if possible,
c                             an appropriate special-purpose integrator
c                             should be used which is designed for
c                             handling the type of difficulty involved.
c                         = 2 the occurrence of roundoff error is
c                             detected, which prevents the requested
c                             tolerance from being achieved.
c                             the error may be under-estimated.
c                         = 3 extremely bad integrand behaviour occurs
c                             at some points of the integration
c                             interval.
c                         = 4 the algorithm does not converge.
c                             roundoff error is detected in the
c                             extrapolation table.
c                             it is presumed that the requested
c                             tolerance cannot be achieved due to
c                             roundoff in the extrapolation table,
c                             and that the returned result is the
c                             best which can be obtained.
c                         = 5 the integral is probably divergent, or
c                             slowly convergent. it must be noted that
c                             divergence can occur with any other value
c                             of ier.gt.0.
c                         = 6 the input is invalid, because
c                             (epsabs.le.0 and
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c                             or (integr.ne.1 and integr.ne.2) or
c                             icall.lt.1 or maxp1.lt.1.
c                             result, abserr, neval, last, rlist(1),
c                             elist(1), iord(1) and nnlog(1) are set
c                             to zero. alist(1) and blist(1) are set
c                             to a and b respectively.
c
c            last  -  integer
c                     on return, last equals the number of
c                     subintervals produces in the subdivision
c                     process, which determines the number of
c                     significant elements actually in the
c                     work arrays.
c            alist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the left
c                     end points of the subintervals in the partition
c                     of the given integration range (a,b)
c
c            blist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the right
c                     end points of the subintervals in the partition
c                     of the given integration range (a,b)
c
c            rlist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the integral
c                     approximations on the subintervals
c
c            elist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the moduli of the
c                     absolute error estimates on the subintervals
c
c            iord   - integer
c                     vector of dimension at least limit, the first k
c                     elements of which are pointers to the error
c                     estimates over the subintervals,
c                     such that elist(iord(1)), ...,
c                     elist(iord(k)) form a decreasing sequence, with
c                     k = last if last.le.(limit/2+2), and
c                     k = limit+1-last otherwise.
c
c            nnlog  - integer
c                     vector of dimension at least limit, containing the
c                     subdivision levels of the subintervals, i.e.
c                     iwork(i) = l means that the subinterval
c                     numbered i is of length abs(b-a)*2**(1-l)
c
c         on entry and return
c            momcom - integer
c                     indicating that the chebyshev moments
c                     have been computed for intervals of lengths
c                     (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1,
c                     momcom.lt.maxp1
c
c            chebmo - double precision
c                     array of dimension (maxp1,25) containing the
c                     chebyshev moments
c
c***references  (none)
c***routines called  d1mach,dqc25f,dqelg,dqpsrt
c***end prologue  dqawoe
c
      double precision a,abseps,abserr,alist,area,area1,area12,area2,a1,
     *  a2,b,blist,b1,b2,chebmo,correc,dabs,defab1,defab2,defabs,dmax1,
     *  domega,d1mach,dres,elist,epmach,epsabs,epsrel,erlarg,erlast,
     *  errbnd,errmax,error1,erro12,error2,errsum,ertest,f,oflow,
     *  omega,resabs,reseps,result,res3la,rlist,rlist2,small,uflow,width
      integer icall,id,ier,ierro,integr,iord,iroff1,iroff2,iroff3,
     *  jupbnd,k,ksgn,ktmin,last,limit,maxerr,maxp1,momcom,nev,neval,
     *  nnlog,nres,nrmax,nrmom,numrl2
      logical extrap,noext,extall
c
      dimension alist(limit),blist(limit),rlist(limit),elist(limit),
     *  iord(limit),rlist2(52),res3la(3),chebmo(maxp1,25),nnlog(limit)
c
      external f
c
c            the dimension of rlist2 is determined by  the value of
c            limexp in subroutine dqelg (rlist2 should be of
c            dimension (limexp+2) at least).
c
c            list of major variables
c            -----------------------
c
c           alist     - list of left end points of all subintervals
c                       considered up to now
c           blist     - list of right end points of all subintervals
c                       considered up to now
c           rlist(i)  - approximation to the integral over
c                       (alist(i),blist(i))
c           rlist2    - array of dimension at least limexp+2
c                       containing the part of the epsilon table
c                       which is still needed for further computations
c           elist(i)  - error estimate applying to rlist(i)
c           maxerr    - pointer to the interval with largest
c                       error estimate
c           errmax    - elist(maxerr)
c           erlast    - error on the interval currently subdivided
c           area      - sum of the integrals over the subintervals
c           errsum    - sum of the errors over the subintervals
c           errbnd    - requested accuracy max(epsabs,epsrel*
c                       abs(result))
c           *****1    - variable for the left subinterval
c           *****2    - variable for the right subinterval
c           last      - index for subdivision
c           nres      - number of calls to the extrapolation routine
c           numrl2    - number of elements in rlist2. if an appropriate
c                       approximation to the compounded integral has
c                       been obtained it is put in rlist2(numrl2) after
c                       numrl2 has been increased by one
c           small     - length of the smallest interval considered
c                       up to now, multiplied by 1.5
c           erlarg    - sum of the errors over the intervals larger
c                       than the smallest interval considered up to now
c           extrap    - logical variable denoting that the routine is
c                       attempting to perform extrapolation, i.e. before
c                       subdividing the smallest interval we try to
c                       decrease the value of erlarg
c           noext     - logical variable denoting that extrapolation
c                       is no longer allowed (true  value)
c
c            machine dependent constants
c            ---------------------------
c
c           epmach is the largest relative spacing.
c           uflow is the smallest positive magnitude.
c           oflow is the largest positive magnitude.
c
c***first executable statement  dqawoe
      epmach = d1mach(4)
c
c         test on validity of parameters
c         ------------------------------
c
      ier = 0
      neval = 0
      last = 0
      result = 0.0d+00
      abserr = 0.0d+00
      alist(1) = a
      blist(1) = b
      rlist(1) = 0.0d+00
      elist(1) = 0.0d+00
      iord(1) = 0
      nnlog(1) = 0
      if((integr.ne.1.and.integr.ne.2).or.(epsabs.le.0.0d+00.and.
     *  epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)).or.icall.lt.1.or.
     *  maxp1.lt.1) ier = 6
      if(ier.eq.6) go to 999
c
c           first approximation to the integral
c           -----------------------------------
c
      domega = dabs(omega)
      nrmom = 0
      if (icall.gt.1) go to 5
      momcom = 0
    5 call dqc25f(f,a,b,domega,integr,nrmom,maxp1,0,result,abserr,
     *  neval,defabs,resabs,momcom,chebmo)
c
c           test on accuracy.
c
      dres = dabs(result)
      errbnd = dmax1(epsabs,epsrel*dres)
      rlist(1) = result
      elist(1) = abserr
      iord(1) = 1
      if(abserr.le.0.1d+03*epmach*defabs.and.abserr.gt.errbnd) ier = 2
      if(limit.eq.1) ier = 1
      if(ier.ne.0.or.abserr.le.errbnd) go to 200
c
c           initializations
c           ---------------
c
      uflow = d1mach(1)
      oflow = d1mach(2)
      errmax = abserr
      maxerr = 1
      area = result
      errsum = abserr
      abserr = oflow
      nrmax = 1
      extrap = .false.
      noext = .false.
      ierro = 0
      iroff1 = 0
      iroff2 = 0
      iroff3 = 0
      ktmin = 0
      small = dabs(b-a)*0.75d+00
      nres = 0
      numrl2 = 0
      extall = .false.
      if(0.5d+00*dabs(b-a)*domega.gt.0.2d+01) go to 10
      numrl2 = 1
      extall = .true.
      rlist2(1) = result
   10 if(0.25d+00*dabs(b-a)*domega.le.0.2d+01) extall = .true.
      ksgn = -1
      if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1
c
c           main do-loop
c           ------------
c
      do 140 last = 2,limit
c
c           bisect the subinterval with the nrmax-th largest
c           error estimate.
c
        nrmom = nnlog(maxerr)+1
        a1 = alist(maxerr)
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
        a2 = b1
        b2 = blist(maxerr)
        erlast = errmax
        call dqc25f(f,a1,b1,domega,integr,nrmom,maxp1,0,
     *  area1,error1,nev,resabs,defab1,momcom,chebmo)
        neval = neval+nev
        call dqc25f(f,a2,b2,domega,integr,nrmom,maxp1,1,
     *  area2,error2,nev,resabs,defab2,momcom,chebmo)
        neval = neval+nev
c
c           improve previous approximations to integral
c           and error and test for accuracy.
c
        area12 = area1+area2
        erro12 = error1+error2
        errsum = errsum+erro12-errmax
        area = area+area12-rlist(maxerr)
        if(defab1.eq.error1.or.defab2.eq.error2) go to 25
        if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12)
     *  .or.erro12.lt.0.99d+00*errmax) go to 20
        if(extrap) iroff2 = iroff2+1
        if(.not.extrap) iroff1 = iroff1+1
   20   if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1
   25   rlist(maxerr) = area1
        rlist(last) = area2
        nnlog(maxerr) = nrmom
        nnlog(last) = nrmom
        errbnd = dmax1(epsabs,epsrel*dabs(area))
c
c           test for roundoff error and eventually set error flag.
c
        if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2
        if(iroff2.ge.5) ierro = 3
c
c           set error flag in the case that the number of
c           subintervals equals limit.
c
        if(last.eq.limit) ier = 1
c
c           set error flag in the case of bad integrand behaviour
c           at a point of the integration range.
c
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)
     *  *(dabs(a2)+0.1d+04*uflow)) ier = 4
c
c           append the newly-created intervals to the list.
c
        if(error2.gt.error1) go to 30
        alist(last) = a2
        blist(maxerr) = b1
        blist(last) = b2
        elist(maxerr) = error1
        elist(last) = error2
        go to 40
   30   alist(maxerr) = a2
        alist(last) = a1
        blist(last) = b1
        rlist(maxerr) = area2
        rlist(last) = area1
        elist(maxerr) = error2
        elist(last) = error1
c
c           call subroutine dqpsrt to maintain the descending ordering
c           in the list of error estimates and select the subinterval
c           with nrmax-th largest error estimate (to bisected next).
c
   40   call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
      if(errsum.le.errbnd) go to 170
      if(ier.ne.0) go to 150
        if(last.eq.2.and.extall) go to 120
        if(noext) go to 140
        if(.not.extall) go to 50
        erlarg = erlarg-erlast
        if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12
        if(extrap) go to 70
c
c           test whether the interval to be bisected next is the
c           smallest interval.
c
   50   width = dabs(blist(maxerr)-alist(maxerr))
        if(width.gt.small) go to 140
        if(extall) go to 60
c
c           test whether we can start with the extrapolation procedure
c           (we do this if we integrate over the next interval with
c           use of a gauss-kronrod rule - see subroutine dqc25f).
c
        small = small*0.5d+00
        if(0.25d+00*width*domega.gt.0.2d+01) go to 140
        extall = .true.
        go to 130
   60   extrap = .true.
        nrmax = 2
   70   if(ierro.eq.3.or.erlarg.le.ertest) go to 90
c
c           the smallest interval has the largest error.
c           before bisecting decrease the sum of the errors over
c           the larger intervals (erlarg) and perform extrapolation.
c
        jupbnd = last
        if (last.gt.(limit/2+2)) jupbnd = limit+3-last
        id = nrmax
        do 80 k = id,jupbnd
          maxerr = iord(nrmax)
          errmax = elist(maxerr)
          if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 140
          nrmax = nrmax+1
   80   continue
c
c           perform extrapolation.
c
   90   numrl2 = numrl2+1
        rlist2(numrl2) = area
        if(numrl2.lt.3) go to 110
        call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres)
        ktmin = ktmin+1
        if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5
        if(abseps.ge.abserr) go to 100
        ktmin = 0
        abserr = abseps
        result = reseps
        correc = erlarg
        ertest = dmax1(epsabs,epsrel*dabs(reseps))
c ***jump out of do-loop
        if(abserr.le.ertest) go to 150
c
c           prepare bisection of the smallest interval.
c
  100   if(numrl2.eq.1) noext = .true.
        if(ier.eq.5) go to 150
  110   maxerr = iord(1)
        errmax = elist(maxerr)
        nrmax = 1
        extrap = .false.
        small = small*0.5d+00
        erlarg = errsum
        go to 140
  120   small = small*0.5d+00
        numrl2 = numrl2+1
        rlist2(numrl2) = area
  130   ertest = errbnd
        erlarg = errsum
  140 continue
c
c           set the final result.
c           ---------------------
c
  150 if(abserr.eq.oflow.or.nres.eq.0) go to 170
      if(ier+ierro.eq.0) go to 165
      if(ierro.eq.3) abserr = abserr+correc
      if(ier.eq.0) ier = 3
      if(result.ne.0.0d+00.and.area.ne.0.0d+00) go to 160
      if(abserr.gt.errsum) go to 170
      if(area.eq.0.0d+00) go to 190
      go to 165
  160 if(abserr/dabs(result).gt.errsum/dabs(area)) go to 170
c
c           test on divergence.
c
  165 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le.
     * defabs*0.1d-01) go to 190
      if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03
     * .or.errsum.ge.dabs(area)) ier = 6
      go to 190
c
c           compute global integral sum.
c
  170 result = 0.0d+00
      do 180 k=1,last
        result = result+rlist(k)
  180 continue
      abserr = errsum
  190 if (ier.gt.2) ier=ier-1
  200 if (integr.eq.2.and.omega.lt.0.0d+00) result=-result
  999 return
      end