1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
subroutine dqawoe (f,a,b,omega,integr,epsabs,epsrel,limit,icall,
* maxp1,result,abserr,neval,ier,last,alist,blist,rlist,elist,iord,
* nnlog,momcom,chebmo)
c***begin prologue dqawoe
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1
c***keywords automatic integrator, special-purpose,
c integrand with oscillatory cos or sin factor,
c clenshaw-curtis method, (end point) singularities,
c extrapolation, globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral
c i = integral of f(x)*w(x) over (a,b)
c where w(x) = cos(omega*x) or w(x)=sin(omega*x),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of oscillatory integrals
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c omega - double precision
c parameter in the integrand weight function
c
c integr - integer
c indicates which of the weight functions is to be
c used
c integr = 1 w(x) = cos(omega*x)
c integr = 2 w(x) = sin(omega*x)
c if integr.ne.1 and integr.ne.2, the routine
c will end with ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upper bound on the number of subdivisions
c in the partition of (a,b), limit.ge.1.
c
c icall - integer
c if dqawoe is to be used only once, icall must
c be set to 1. assume that during this call, the
c chebyshev moments (for clenshaw-curtis integration
c of degree 24) have been computed for intervals of
c lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1.
c if icall.gt.1 this means that dqawoe has been
c called twice or more on intervals of the same
c length abs(b-a). the chebyshev moments already
c computed are then re-used in subsequent calls.
c if icall.lt.1, the routine will end with ier = 6.
c
c maxp1 - integer
c gives an upper bound on the number of chebyshev
c moments which can be stored, i.e. for the
c intervals of lenghts abs(b-a)*2**(-l),
c l=0,1, ..., maxp1-2, maxp1.ge.1.
c if maxp1.lt.1, the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the
c requested accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine.
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand, in order to
c determine the integration difficulties.
c if the position of a local difficulty can
c be determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is presumed that the requested
c tolerance cannot be achieved due to
c roundoff in the extrapolation table,
c and that the returned result is the
c best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.gt.0.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or (integr.ne.1 and integr.ne.2) or
c icall.lt.1 or maxp1.lt.1.
c result, abserr, neval, last, rlist(1),
c elist(1), iord(1) and nnlog(1) are set
c to zero. alist(1) and blist(1) are set
c to a and b respectively.
c
c last - integer
c on return, last equals the number of
c subintervals produces in the subdivision
c process, which determines the number of
c significant elements actually in the
c work arrays.
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the error
c estimates over the subintervals,
c such that elist(iord(1)), ...,
c elist(iord(k)) form a decreasing sequence, with
c k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise.
c
c nnlog - integer
c vector of dimension at least limit, containing the
c subdivision levels of the subintervals, i.e.
c iwork(i) = l means that the subinterval
c numbered i is of length abs(b-a)*2**(1-l)
c
c on entry and return
c momcom - integer
c indicating that the chebyshev moments
c have been computed for intervals of lengths
c (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1,
c momcom.lt.maxp1
c
c chebmo - double precision
c array of dimension (maxp1,25) containing the
c chebyshev moments
c
c***references (none)
c***routines called d1mach,dqc25f,dqelg,dqpsrt
c***end prologue dqawoe
c
double precision a,abseps,abserr,alist,area,area1,area12,area2,a1,
* a2,b,blist,b1,b2,chebmo,correc,dabs,defab1,defab2,defabs,dmax1,
* domega,d1mach,dres,elist,epmach,epsabs,epsrel,erlarg,erlast,
* errbnd,errmax,error1,erro12,error2,errsum,ertest,f,oflow,
* omega,resabs,reseps,result,res3la,rlist,rlist2,small,uflow,width
integer icall,id,ier,ierro,integr,iord,iroff1,iroff2,iroff3,
* jupbnd,k,ksgn,ktmin,last,limit,maxerr,maxp1,momcom,nev,neval,
* nnlog,nres,nrmax,nrmom,numrl2
logical extrap,noext,extall
c
dimension alist(limit),blist(limit),rlist(limit),elist(limit),
* iord(limit),rlist2(52),res3la(3),chebmo(maxp1,25),nnlog(limit)
c
external f
c
c the dimension of rlist2 is determined by the value of
c limexp in subroutine dqelg (rlist2 should be of
c dimension (limexp+2) at least).
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c rlist2 - array of dimension at least limexp+2
c containing the part of the epsilon table
c which is still needed for further computations
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c erlast - error on the interval currently subdivided
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c nres - number of calls to the extrapolation routine
c numrl2 - number of elements in rlist2. if an appropriate
c approximation to the compounded integral has
c been obtained it is put in rlist2(numrl2) after
c numrl2 has been increased by one
c small - length of the smallest interval considered
c up to now, multiplied by 1.5
c erlarg - sum of the errors over the intervals larger
c than the smallest interval considered up to now
c extrap - logical variable denoting that the routine is
c attempting to perform extrapolation, i.e. before
c subdividing the smallest interval we try to
c decrease the value of erlarg
c noext - logical variable denoting that extrapolation
c is no longer allowed (true value)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c oflow is the largest positive magnitude.
c
c***first executable statement dqawoe
epmach = d1mach(4)
c
c test on validity of parameters
c ------------------------------
c
ier = 0
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
nnlog(1) = 0
if((integr.ne.1.and.integr.ne.2).or.(epsabs.le.0.0d+00.and.
* epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)).or.icall.lt.1.or.
* maxp1.lt.1) ier = 6
if(ier.eq.6) go to 999
c
c first approximation to the integral
c -----------------------------------
c
domega = dabs(omega)
nrmom = 0
if (icall.gt.1) go to 5
momcom = 0
5 call dqc25f(f,a,b,domega,integr,nrmom,maxp1,0,result,abserr,
* neval,defabs,resabs,momcom,chebmo)
c
c test on accuracy.
c
dres = dabs(result)
errbnd = dmax1(epsabs,epsrel*dres)
rlist(1) = result
elist(1) = abserr
iord(1) = 1
if(abserr.le.0.1d+03*epmach*defabs.and.abserr.gt.errbnd) ier = 2
if(limit.eq.1) ier = 1
if(ier.ne.0.or.abserr.le.errbnd) go to 200
c
c initializations
c ---------------
c
uflow = d1mach(1)
oflow = d1mach(2)
errmax = abserr
maxerr = 1
area = result
errsum = abserr
abserr = oflow
nrmax = 1
extrap = .false.
noext = .false.
ierro = 0
iroff1 = 0
iroff2 = 0
iroff3 = 0
ktmin = 0
small = dabs(b-a)*0.75d+00
nres = 0
numrl2 = 0
extall = .false.
if(0.5d+00*dabs(b-a)*domega.gt.0.2d+01) go to 10
numrl2 = 1
extall = .true.
rlist2(1) = result
10 if(0.25d+00*dabs(b-a)*domega.le.0.2d+01) extall = .true.
ksgn = -1
if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1
c
c main do-loop
c ------------
c
do 140 last = 2,limit
c
c bisect the subinterval with the nrmax-th largest
c error estimate.
c
nrmom = nnlog(maxerr)+1
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
erlast = errmax
call dqc25f(f,a1,b1,domega,integr,nrmom,maxp1,0,
* area1,error1,nev,resabs,defab1,momcom,chebmo)
neval = neval+nev
call dqc25f(f,a2,b2,domega,integr,nrmom,maxp1,1,
* area2,error2,nev,resabs,defab2,momcom,chebmo)
neval = neval+nev
c
c improve previous approximations to integral
c and error and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(defab1.eq.error1.or.defab2.eq.error2) go to 25
if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12)
* .or.erro12.lt.0.99d+00*errmax) go to 20
if(extrap) iroff2 = iroff2+1
if(.not.extrap) iroff1 = iroff1+1
20 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1
25 rlist(maxerr) = area1
rlist(last) = area2
nnlog(maxerr) = nrmom
nnlog(last) = nrmom
errbnd = dmax1(epsabs,epsrel*dabs(area))
c
c test for roundoff error and eventually set error flag.
c
if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2
if(iroff2.ge.5) ierro = 3
c
c set error flag in the case that the number of
c subintervals equals limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)
* *(dabs(a2)+0.1d+04*uflow)) ier = 4
c
c append the newly-created intervals to the list.
c
if(error2.gt.error1) go to 30
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 40
30 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with nrmax-th largest error estimate (to bisected next).
c
40 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(errsum.le.errbnd) go to 170
if(ier.ne.0) go to 150
if(last.eq.2.and.extall) go to 120
if(noext) go to 140
if(.not.extall) go to 50
erlarg = erlarg-erlast
if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12
if(extrap) go to 70
c
c test whether the interval to be bisected next is the
c smallest interval.
c
50 width = dabs(blist(maxerr)-alist(maxerr))
if(width.gt.small) go to 140
if(extall) go to 60
c
c test whether we can start with the extrapolation procedure
c (we do this if we integrate over the next interval with
c use of a gauss-kronrod rule - see subroutine dqc25f).
c
small = small*0.5d+00
if(0.25d+00*width*domega.gt.0.2d+01) go to 140
extall = .true.
go to 130
60 extrap = .true.
nrmax = 2
70 if(ierro.eq.3.or.erlarg.le.ertest) go to 90
c
c the smallest interval has the largest error.
c before bisecting decrease the sum of the errors over
c the larger intervals (erlarg) and perform extrapolation.
c
jupbnd = last
if (last.gt.(limit/2+2)) jupbnd = limit+3-last
id = nrmax
do 80 k = id,jupbnd
maxerr = iord(nrmax)
errmax = elist(maxerr)
if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 140
nrmax = nrmax+1
80 continue
c
c perform extrapolation.
c
90 numrl2 = numrl2+1
rlist2(numrl2) = area
if(numrl2.lt.3) go to 110
call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres)
ktmin = ktmin+1
if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5
if(abseps.ge.abserr) go to 100
ktmin = 0
abserr = abseps
result = reseps
correc = erlarg
ertest = dmax1(epsabs,epsrel*dabs(reseps))
c ***jump out of do-loop
if(abserr.le.ertest) go to 150
c
c prepare bisection of the smallest interval.
c
100 if(numrl2.eq.1) noext = .true.
if(ier.eq.5) go to 150
110 maxerr = iord(1)
errmax = elist(maxerr)
nrmax = 1
extrap = .false.
small = small*0.5d+00
erlarg = errsum
go to 140
120 small = small*0.5d+00
numrl2 = numrl2+1
rlist2(numrl2) = area
130 ertest = errbnd
erlarg = errsum
140 continue
c
c set the final result.
c ---------------------
c
150 if(abserr.eq.oflow.or.nres.eq.0) go to 170
if(ier+ierro.eq.0) go to 165
if(ierro.eq.3) abserr = abserr+correc
if(ier.eq.0) ier = 3
if(result.ne.0.0d+00.and.area.ne.0.0d+00) go to 160
if(abserr.gt.errsum) go to 170
if(area.eq.0.0d+00) go to 190
go to 165
160 if(abserr/dabs(result).gt.errsum/dabs(area)) go to 170
c
c test on divergence.
c
165 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le.
* defabs*0.1d-01) go to 190
if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03
* .or.errsum.ge.dabs(area)) ier = 6
go to 190
c
c compute global integral sum.
c
170 result = 0.0d+00
do 180 k=1,last
result = result+rlist(k)
180 continue
abserr = errsum
190 if (ier.gt.2) ier=ier-1
200 if (integr.eq.2.and.omega.lt.0.0d+00) result=-result
999 return
end
|