File: dqawse.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (369 lines) | stat: -rw-r--r-- 14,040 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
      subroutine dqawse(f,a,b,alfa,beta,integr,epsabs,epsrel,limit,
     *   result,abserr,neval,ier,alist,blist,rlist,elist,iord,last)
c***begin prologue  dqawse
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a2a1
c***keywords  automatic integrator, special-purpose,
c             algebraico-logarithmic end point singularities,
c             clenshaw-curtis method
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose  the routine calculates an approximation result to a given
c            definite integral i = integral of f*w over (a,b),
c            (where w shows a singular behaviour at the end points,
c            see parameter integr).
c            hopefully satisfying following claim for accuracy
c            abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c        integration of functions having algebraico-logarithmic
c        end point singularities
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration, b.gt.a
c                     if b.le.a, the routine will end with ier = 6.
c
c            alfa   - double precision
c                     parameter in the weight function, alfa.gt.(-1)
c                     if alfa.le.(-1), the routine will end with
c                     ier = 6.
c
c            beta   - double precision
c                     parameter in the weight function, beta.gt.(-1)
c                     if beta.le.(-1), the routine will end with
c                     ier = 6.
c
c            integr - integer
c                     indicates which weight function is to be used
c                     = 1  (x-a)**alfa*(b-x)**beta
c                     = 2  (x-a)**alfa*(b-x)**beta*log(x-a)
c                     = 3  (x-a)**alfa*(b-x)**beta*log(b-x)
c                     = 4  (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x)
c                     if integr.lt.1 or integr.gt.4, the routine
c                     will end with ier = 6.
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c            limit  - integer
c                     gives an upper bound on the number of subintervals
c                     in the partition of (a,b), limit.ge.2
c                     if limit.lt.2, the routine will end with ier = 6.
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the requested
c                             accuracy has been achieved.
c                     ier.gt.0 abnormal termination of the routine
c                             the estimates for the integral and error
c                             are less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                         = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more
c                             subdivisions by increasing the value of
c                             limit. however, if this yields no
c                             improvement, it is advised to analyze the
c                             integrand in order to determine the
c                             integration difficulties which prevent the
c                             requested tolerance from being achieved.
c                             in case of a jump discontinuity or a local
c                             singularity of algebraico-logarithmic type
c                             at one or more interior points of the
c                             integration range, one should proceed by
c                             splitting up the interval at these
c                             points and calling the integrator on the
c                             subranges.
c                         = 2 the occurrence of roundoff error is
c                             detected, which prevents the requested
c                             tolerance from being achieved.
c                         = 3 extremely bad integrand behaviour occurs
c                             at some points of the integration
c                             interval.
c                         = 6 the input is invalid, because
c                             b.le.a or alfa.le.(-1) or beta.le.(-1), or
c                             integr.lt.1 or integr.gt.4, or
c                             (epsabs.le.0 and
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                             or limit.lt.2.
c                             result, abserr, neval, rlist(1), elist(1),
c                             iord(1) and last are set to zero. alist(1)
c                             and blist(1) are set to a and b
c                             respectively.
c
c            alist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the left
c                     end points of the subintervals in the partition
c                     of the given integration range (a,b)
c
c            blist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the right
c                     end points of the subintervals in the partition
c                     of the given integration range (a,b)
c
c            rlist  - double precision
c                     vector of dimension at least limit,the first
c                      last  elements of which are the integral
c                     approximations on the subintervals
c
c            elist  - double precision
c                     vector of dimension at least limit, the first
c                      last  elements of which are the moduli of the
c                     absolute error estimates on the subintervals
c
c            iord   - integer
c                     vector of dimension at least limit, the first k
c                     of which are pointers to the error
c                     estimates over the subintervals, so that
c                     elist(iord(1)), ..., elist(iord(k)) with k = last
c                     if last.le.(limit/2+2), and k = limit+1-last
c                     otherwise form a decreasing sequence
c
c            last   - integer
c                     number of subintervals actually produced in
c                     the subdivision process
c
c***references  (none)
c***routines called  d1mach,dqc25s,dqmomo,dqpsrt
c***end prologue  dqawse
c
      double precision a,abserr,alfa,alist,area,area1,area12,area2,a1,
     *  a2,b,beta,blist,b1,b2,centre,dabs,dmax1,d1mach,elist,epmach,
     *  epsabs,epsrel,errbnd,errmax,error1,erro12,error2,errsum,f,
     *  resas1,resas2,result,rg,rh,ri,rj,rlist,uflow
      integer ier,integr,iord,iroff1,iroff2,k,last,limit,maxerr,nev,
     *  neval,nrmax
c
      external f
c
      dimension alist(limit),blist(limit),rlist(limit),elist(limit),
     *  iord(limit),ri(25),rj(25),rh(25),rg(25)
c
c            list of major variables
c            -----------------------
c
c           alist     - list of left end points of all subintervals
c                       considered up to now
c           blist     - list of right end points of all subintervals
c                       considered up to now
c           rlist(i)  - approximation to the integral over
c                       (alist(i),blist(i))
c           elist(i)  - error estimate applying to rlist(i)
c           maxerr    - pointer to the interval with largest
c                       error estimate
c           errmax    - elist(maxerr)
c           area      - sum of the integrals over the subintervals
c           errsum    - sum of the errors over the subintervals
c           errbnd    - requested accuracy max(epsabs,epsrel*
c                       abs(result))
c           *****1    - variable for the left subinterval
c           *****2    - variable for the right subinterval
c           last      - index for subdivision
c
c
c            machine dependent constants
c            ---------------------------
c
c           epmach is the largest relative spacing.
c           uflow is the smallest positive magnitude.
c
c***first executable statement  dqawse
      epmach = d1mach(4)
      uflow = d1mach(1)
c
c           test on validity of parameters
c           ------------------------------
c
      ier = 6
      neval = 0
      last = 0
      rlist(1) = 0.0d+00
      elist(1) = 0.0d+00
      iord(1) = 0
      result = 0.0d+00
      abserr = 0.0d+00
      if(b.le.a.or.(epsabs.eq.0.0d+00.and.
     *  epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)).or.alfa.le.(-0.1d+01).
     *  or.beta.le.(-0.1d+01).or.integr.lt.1.or.integr.gt.4.or.
     *  limit.lt.2) go to 999
      ier = 0
c
c           compute the modified chebyshev moments.
c
      call dqmomo(alfa,beta,ri,rj,rg,rh,integr)
c
c           integrate over the intervals (a,(a+b)/2) and ((a+b)/2,b).
c
      centre = 0.5d+00*(b+a)
      call dqc25s(f,a,b,a,centre,alfa,beta,ri,rj,rg,rh,area1,
     *  error1,resas1,integr,nev)
      neval = nev
      call dqc25s(f,a,b,centre,b,alfa,beta,ri,rj,rg,rh,area2,
     *  error2,resas2,integr,nev)
      last = 2
      neval = neval+nev
      result = area1+area2
      abserr = error1+error2
c
c           test on accuracy.
c
      errbnd = dmax1(epsabs,epsrel*dabs(result))
c
c           initialization
c           --------------
c
      if(error2.gt.error1) go to 10
      alist(1) = a
      alist(2) = centre
      blist(1) = centre
      blist(2) = b
      rlist(1) = area1
      rlist(2) = area2
      elist(1) = error1
      elist(2) = error2
      go to 20
   10 alist(1) = centre
      alist(2) = a
      blist(1) = b
      blist(2) = centre
      rlist(1) = area2
      rlist(2) = area1
      elist(1) = error2
      elist(2) = error1
   20 iord(1) = 1
      iord(2) = 2
      if(limit.eq.2) ier = 1
      if(abserr.le.errbnd.or.ier.eq.1) go to 999
      errmax = elist(1)
      maxerr = 1
      nrmax = 1
      area = result
      errsum = abserr
      iroff1 = 0
      iroff2 = 0
c
c            main do-loop
c            ------------
c
      do 60 last = 3,limit
c
c           bisect the subinterval with largest error estimate.
c
        a1 = alist(maxerr)
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
        a2 = b1
        b2 = blist(maxerr)
c
        call dqc25s(f,a,b,a1,b1,alfa,beta,ri,rj,rg,rh,area1,
     *  error1,resas1,integr,nev)
        neval = neval+nev
        call dqc25s(f,a,b,a2,b2,alfa,beta,ri,rj,rg,rh,area2,
     *  error2,resas2,integr,nev)
        neval = neval+nev
c
c           improve previous approximations integral and error
c           and test for accuracy.
c
        area12 = area1+area2
        erro12 = error1+error2
        errsum = errsum+erro12-errmax
        area = area+area12-rlist(maxerr)
        if(a.eq.a1.or.b.eq.b2) go to 30
        if(resas1.eq.error1.or.resas2.eq.error2) go to 30
c
c           test for roundoff error.
c
        if(dabs(rlist(maxerr)-area12).lt.0.1d-04*dabs(area12)
     *  .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
        if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
   30   rlist(maxerr) = area1
        rlist(last) = area2
c
c           test on accuracy.
c
        errbnd = dmax1(epsabs,epsrel*dabs(area))
        if(errsum.le.errbnd) go to 35
c
c           set error flag in the case that the number of interval
c           bisections exceeds limit.
c
        if(last.eq.limit) ier = 1
c
c
c           set error flag in the case of roundoff error.
c
        if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
c
c           set error flag in the case of bad integrand behaviour
c           at interior points of integration range.
c
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)*
     *  (dabs(a2)+0.1d+04*uflow)) ier = 3
c
c           append the newly-created intervals to the list.
c
   35   if(error2.gt.error1) go to 40
        alist(last) = a2
        blist(maxerr) = b1
        blist(last) = b2
        elist(maxerr) = error1
        elist(last) = error2
        go to 50
   40   alist(maxerr) = a2
        alist(last) = a1
        blist(last) = b1
        rlist(maxerr) = area2
        rlist(last) = area1
        elist(maxerr) = error2
        elist(last) = error1
c
c           call subroutine dqpsrt to maintain the descending ordering
c           in the list of error estimates and select the subinterval
c           with largest error estimate (to be bisected next).
c
   50   call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
        if (ier.ne.0.or.errsum.le.errbnd) go to 70
   60 continue
c
c           compute final result.
c           ---------------------
c
   70 result = 0.0d+00
      do 80 k=1,last
        result = result+rlist(k)
   80 continue
      abserr = errsum
  999 return
      end