1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
subroutine dqawse(f,a,b,alfa,beta,integr,epsabs,epsrel,limit,
* result,abserr,neval,ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqawse
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1
c***keywords automatic integrator, special-purpose,
c algebraico-logarithmic end point singularities,
c clenshaw-curtis method
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f*w over (a,b),
c (where w shows a singular behaviour at the end points,
c see parameter integr).
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c integration of functions having algebraico-logarithmic
c end point singularities
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration, b.gt.a
c if b.le.a, the routine will end with ier = 6.
c
c alfa - double precision
c parameter in the weight function, alfa.gt.(-1)
c if alfa.le.(-1), the routine will end with
c ier = 6.
c
c beta - double precision
c parameter in the weight function, beta.gt.(-1)
c if beta.le.(-1), the routine will end with
c ier = 6.
c
c integr - integer
c indicates which weight function is to be used
c = 1 (x-a)**alfa*(b-x)**beta
c = 2 (x-a)**alfa*(b-x)**beta*log(x-a)
c = 3 (x-a)**alfa*(b-x)**beta*log(b-x)
c = 4 (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x)
c if integr.lt.1 or integr.gt.4, the routine
c will end with ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upper bound on the number of subintervals
c in the partition of (a,b), limit.ge.2
c if limit.lt.2, the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for the integral and error
c are less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit. however, if this yields no
c improvement, it is advised to analyze the
c integrand in order to determine the
c integration difficulties which prevent the
c requested tolerance from being achieved.
c in case of a jump discontinuity or a local
c singularity of algebraico-logarithmic type
c at one or more interior points of the
c integration range, one should proceed by
c splitting up the interval at these
c points and calling the integrator on the
c subranges.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 6 the input is invalid, because
c b.le.a or alfa.le.(-1) or beta.le.(-1), or
c integr.lt.1 or integr.gt.4, or
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c or limit.lt.2.
c result, abserr, neval, rlist(1), elist(1),
c iord(1) and last are set to zero. alist(1)
c and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit,the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c of which are pointers to the error
c estimates over the subintervals, so that
c elist(iord(1)), ..., elist(iord(k)) with k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise form a decreasing sequence
c
c last - integer
c number of subintervals actually produced in
c the subdivision process
c
c***references (none)
c***routines called d1mach,dqc25s,dqmomo,dqpsrt
c***end prologue dqawse
c
double precision a,abserr,alfa,alist,area,area1,area12,area2,a1,
* a2,b,beta,blist,b1,b2,centre,dabs,dmax1,d1mach,elist,epmach,
* epsabs,epsrel,errbnd,errmax,error1,erro12,error2,errsum,f,
* resas1,resas2,result,rg,rh,ri,rj,rlist,uflow
integer ier,integr,iord,iroff1,iroff2,k,last,limit,maxerr,nev,
* neval,nrmax
c
external f
c
dimension alist(limit),blist(limit),rlist(limit),elist(limit),
* iord(limit),ri(25),rj(25),rh(25),rg(25)
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqawse
epmach = d1mach(4)
uflow = d1mach(1)
c
c test on validity of parameters
c ------------------------------
c
ier = 6
neval = 0
last = 0
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
result = 0.0d+00
abserr = 0.0d+00
if(b.le.a.or.(epsabs.eq.0.0d+00.and.
* epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)).or.alfa.le.(-0.1d+01).
* or.beta.le.(-0.1d+01).or.integr.lt.1.or.integr.gt.4.or.
* limit.lt.2) go to 999
ier = 0
c
c compute the modified chebyshev moments.
c
call dqmomo(alfa,beta,ri,rj,rg,rh,integr)
c
c integrate over the intervals (a,(a+b)/2) and ((a+b)/2,b).
c
centre = 0.5d+00*(b+a)
call dqc25s(f,a,b,a,centre,alfa,beta,ri,rj,rg,rh,area1,
* error1,resas1,integr,nev)
neval = nev
call dqc25s(f,a,b,centre,b,alfa,beta,ri,rj,rg,rh,area2,
* error2,resas2,integr,nev)
last = 2
neval = neval+nev
result = area1+area2
abserr = error1+error2
c
c test on accuracy.
c
errbnd = dmax1(epsabs,epsrel*dabs(result))
c
c initialization
c --------------
c
if(error2.gt.error1) go to 10
alist(1) = a
alist(2) = centre
blist(1) = centre
blist(2) = b
rlist(1) = area1
rlist(2) = area2
elist(1) = error1
elist(2) = error2
go to 20
10 alist(1) = centre
alist(2) = a
blist(1) = b
blist(2) = centre
rlist(1) = area2
rlist(2) = area1
elist(1) = error2
elist(2) = error1
20 iord(1) = 1
iord(2) = 2
if(limit.eq.2) ier = 1
if(abserr.le.errbnd.or.ier.eq.1) go to 999
errmax = elist(1)
maxerr = 1
nrmax = 1
area = result
errsum = abserr
iroff1 = 0
iroff2 = 0
c
c main do-loop
c ------------
c
do 60 last = 3,limit
c
c bisect the subinterval with largest error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
c
call dqc25s(f,a,b,a1,b1,alfa,beta,ri,rj,rg,rh,area1,
* error1,resas1,integr,nev)
neval = neval+nev
call dqc25s(f,a,b,a2,b2,alfa,beta,ri,rj,rg,rh,area2,
* error2,resas2,integr,nev)
neval = neval+nev
c
c improve previous approximations integral and error
c and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(a.eq.a1.or.b.eq.b2) go to 30
if(resas1.eq.error1.or.resas2.eq.error2) go to 30
c
c test for roundoff error.
c
if(dabs(rlist(maxerr)-area12).lt.0.1d-04*dabs(area12)
* .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
30 rlist(maxerr) = area1
rlist(last) = area2
c
c test on accuracy.
c
errbnd = dmax1(epsabs,epsrel*dabs(area))
if(errsum.le.errbnd) go to 35
c
c set error flag in the case that the number of interval
c bisections exceeds limit.
c
if(last.eq.limit) ier = 1
c
c
c set error flag in the case of roundoff error.
c
if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
c
c set error flag in the case of bad integrand behaviour
c at interior points of integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)*
* (dabs(a2)+0.1d+04*uflow)) ier = 3
c
c append the newly-created intervals to the list.
c
35 if(error2.gt.error1) go to 40
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 50
40 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with largest error estimate (to be bisected next).
c
50 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if (ier.ne.0.or.errsum.le.errbnd) go to 70
60 continue
c
c compute final result.
c ---------------------
c
70 result = 0.0d+00
do 80 k=1,last
result = result+rlist(k)
80 continue
abserr = errsum
999 return
end
|