1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
subroutine dqc25c(f,a,b,c,result,abserr,krul,neval)
c***begin prologue dqc25c
c***date written 810101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a2,j4
c***keywords 25-point clenshaw-curtis integration
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose to compute i = integral of f*w over (a,b) with
c error estimate, where w(x) = 1/(x-c)
c***description
c
c integration rules for the computation of cauchy
c principal value integrals
c standard fortran subroutine
c double precision version
c
c parameters
c f - double precision
c function subprogram defining the integrand function
c f(x). the actual name for f needs to be declared
c e x t e r n a l in the driver program.
c
c a - double precision
c left end point of the integration interval
c
c b - double precision
c right end point of the integration interval, b.gt.a
c
c c - double precision
c parameter in the weight function
c
c result - double precision
c approximation to the integral
c result is computed by using a generalized
c clenshaw-curtis method if c lies within ten percent
c of the integration interval. in the other case the
c 15-point kronrod rule obtained by optimal addition
c of abscissae to the 7-point gauss rule, is applied.
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c krul - integer
c key which is decreased by 1 if the 15-point
c gauss-kronrod scheme has been used
c
c neval - integer
c number of integrand evaluations
c
c.......................................................................
c***references (none)
c***routines called dqcheb,dqk15w,dqwgtc
c***end prologue dqc25c
c
double precision a,abserr,ak22,amom0,amom1,amom2,b,c,cc,centr,
* cheb12,cheb24,dabs,dlog,dqwgtc,f,fval,hlgth,p2,p3,p4,resabs,
* resasc,result,res12,res24,u,x
integer i,isym,k,kp,krul,neval
c
dimension x(11),fval(25),cheb12(13),cheb24(25)
c
external f,dqwgtc
c
c the vector x contains the values cos(k*pi/24),
c k = 1, ..., 11, to be used for the chebyshev series
c expansion of f
c
data x(1) / 0.9914448613 7381041114 4557526928 563d0 /
data x(2) / 0.9659258262 8906828674 9743199728 897d0 /
data x(3) / 0.9238795325 1128675612 8183189396 788d0 /
data x(4) / 0.8660254037 8443864676 3723170752 936d0 /
data x(5) / 0.7933533402 9123516457 9776961501 299d0 /
data x(6) / 0.7071067811 8654752440 0844362104 849d0 /
data x(7) / 0.6087614290 0872063941 6097542898 164d0 /
data x(8) / 0.5000000000 0000000000 0000000000 000d0 /
data x(9) / 0.3826834323 6508977172 8459984030 399d0 /
data x(10) / 0.2588190451 0252076234 8898837624 048d0 /
data x(11) / 0.1305261922 2005159154 8406227895 489d0 /
c
c list of major variables
c ----------------------
c fval - value of the function f at the points
c cos(k*pi/24), k = 0, ..., 24
c cheb12 - chebyshev series expansion coefficients,
c for the function f, of degree 12
c cheb24 - chebyshev series expansion coefficients,
c for the function f, of degree 24
c res12 - approximation to the integral corresponding
c to the use of cheb12
c res24 - approximation to the integral corresponding
c to the use of cheb24
c dqwgtc - external function subprogram defining
c the weight function
c hlgth - half-length of the interval
c centr - mid point of the interval
c
c
c check the position of c.
c
c***first executable statement dqc25c
cc = (0.2d+01*c-b-a)/(b-a)
if(dabs(cc).lt.0.11d+01) go to 10
c
c apply the 15-point gauss-kronrod scheme.
c
krul = krul-1
call dqk15w(f,dqwgtc,c,p2,p3,p4,kp,a,b,result,abserr,
* resabs,resasc)
neval = 15
if (resasc.eq.abserr) krul = krul+1
go to 50
c
c use the generalized clenshaw-curtis method.
c
10 hlgth = 0.5d+00*(b-a)
centr = 0.5d+00*(b+a)
neval = 25
fval(1) = 0.5d+00*f(hlgth+centr)
fval(13) = f(centr)
fval(25) = 0.5d+00*f(centr-hlgth)
do 20 i=2,12
u = hlgth*x(i-1)
isym = 26-i
fval(i) = f(u+centr)
fval(isym) = f(centr-u)
20 continue
c
c compute the chebyshev series expansion.
c
call dqcheb(x,fval,cheb12,cheb24)
c
c the modified chebyshev moments are computed by forward
c recursion, using amom0 and amom1 as starting values.
c
amom0 = dlog(dabs((0.1d+01-cc)/(0.1d+01+cc)))
amom1 = 0.2d+01+cc*amom0
res12 = cheb12(1)*amom0+cheb12(2)*amom1
res24 = cheb24(1)*amom0+cheb24(2)*amom1
do 30 k=3,13
amom2 = 0.2d+01*cc*amom1-amom0
ak22 = (k-2)*(k-2)
if((k/2)*2.eq.k) amom2 = amom2-0.4d+01/(ak22-0.1d+01)
res12 = res12+cheb12(k)*amom2
res24 = res24+cheb24(k)*amom2
amom0 = amom1
amom1 = amom2
30 continue
do 40 k=14,25
amom2 = 0.2d+01*cc*amom1-amom0
ak22 = (k-2)*(k-2)
if((k/2)*2.eq.k) amom2 = amom2-0.4d+01/(ak22-0.1d+01)
res24 = res24+cheb24(k)*amom2
amom0 = amom1
amom1 = amom2
40 continue
result = res24
abserr = dabs(res24-res12)
50 return
end
|