1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
subroutine dqc25s(f,a,b,bl,br,alfa,beta,ri,rj,rg,rh,result,
* abserr,resasc,integr,nev)
c***begin prologue dqc25s
c***date written 810101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a2
c***keywords 25-point clenshaw-curtis integration
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose to compute i = integral of f*w over (bl,br), with error
c estimate, where the weight function w has a singular
c behaviour of algebraico-logarithmic type at the points
c a and/or b. (bl,br) is a part of (a,b).
c***description
c
c integration rules for integrands having algebraico-logarithmic
c end point singularities
c standard fortran subroutine
c double precision version
c
c parameters
c f - double precision
c function subprogram defining the integrand
c f(x). the actual name for f needs to be declared
c e x t e r n a l in the driver program.
c
c a - double precision
c left end point of the original interval
c
c b - double precision
c right end point of the original interval, b.gt.a
c
c bl - double precision
c lower limit of integration, bl.ge.a
c
c br - double precision
c upper limit of integration, br.le.b
c
c alfa - double precision
c parameter in the weight function
c
c beta - double precision
c parameter in the weight function
c
c ri,rj,rg,rh - double precision
c modified chebyshev moments for the application
c of the generalized clenshaw-curtis
c method (computed in subroutine dqmomo)
c
c result - double precision
c approximation to the integral
c result is computed by using a generalized
c clenshaw-curtis method if b1 = a or br = b.
c in all other cases the 15-point kronrod
c rule is applied, obtained by optimal addition of
c abscissae to the 7-point gauss rule.
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c resasc - double precision
c approximation to the integral of abs(f*w-i/(b-a))
c
c integr - integer
c which determines the weight function
c = 1 w(x) = (x-a)**alfa*(b-x)**beta
c = 2 w(x) = (x-a)**alfa*(b-x)**beta*log(x-a)
c = 3 w(x) = (x-a)**alfa*(b-x)**beta*log(b-x)
c = 4 w(x) = (x-a)**alfa*(b-x)**beta*log(x-a)*
c log(b-x)
c
c nev - integer
c number of integrand evaluations
c***references (none)
c***routines called dqcheb,dqk15w
c***end prologue dqc25s
c
double precision a,abserr,alfa,b,beta,bl,br,centr,cheb12,cheb24,
* dabs,dc,dlog,f,factor,fix,fval,hlgth,resabs,resasc,result,res12,
* res24,rg,rh,ri,rj,u,dqwgts,x
integer i,integr,isym,nev
c
dimension cheb12(13),cheb24(25),fval(25),rg(25),rh(25),ri(25),
* rj(25),x(11)
c
external f,dqwgts
c
c the vector x contains the values cos(k*pi/24)
c k = 1, ..., 11, to be used for the computation of the
c chebyshev series expansion of f.
c
data x(1) / 0.9914448613 7381041114 4557526928 563d0 /
data x(2) / 0.9659258262 8906828674 9743199728 897d0 /
data x(3) / 0.9238795325 1128675612 8183189396 788d0 /
data x(4) / 0.8660254037 8443864676 3723170752 936d0 /
data x(5) / 0.7933533402 9123516457 9776961501 299d0 /
data x(6) / 0.7071067811 8654752440 0844362104 849d0 /
data x(7) / 0.6087614290 0872063941 6097542898 164d0 /
data x(8) / 0.5000000000 0000000000 0000000000 000d0 /
data x(9) / 0.3826834323 6508977172 8459984030 399d0 /
data x(10) / 0.2588190451 0252076234 8898837624 048d0 /
data x(11) / 0.1305261922 2005159154 8406227895 489d0 /
c
c list of major variables
c -----------------------
c
c fval - value of the function f at the points
c (br-bl)*0.5*cos(k*pi/24)+(br+bl)*0.5
c k = 0, ..., 24
c cheb12 - coefficients of the chebyshev series expansion
c of degree 12, for the function f, in the
c interval (bl,br)
c cheb24 - coefficients of the chebyshev series expansion
c of degree 24, for the function f, in the
c interval (bl,br)
c res12 - approximation to the integral obtained from cheb12
c res24 - approximation to the integral obtained from cheb24
c dqwgts - external function subprogram defining
c the four possible weight functions
c hlgth - half-length of the interval (bl,br)
c centr - mid point of the interval (bl,br)
c
c***first executable statement dqc25s
nev = 25
if(bl.eq.a.and.(alfa.ne.0.0d+00.or.integr.eq.2.or.integr.eq.4))
* go to 10
if(br.eq.b.and.(beta.ne.0.0d+00.or.integr.eq.3.or.integr.eq.4))
* go to 140
c
c if a.gt.bl and b.lt.br, apply the 15-point gauss-kronrod
c scheme.
c
c
call dqk15w(f,dqwgts,a,b,alfa,beta,integr,bl,br,
* result,abserr,resabs,resasc)
nev = 15
go to 270
c
c this part of the program is executed only if a = bl.
c ----------------------------------------------------
c
c compute the chebyshev series expansion of the
c following function
c f1 = (0.5*(b+b-br-a)-0.5*(br-a)*x)**beta
c *f(0.5*(br-a)*x+0.5*(br+a))
c
10 hlgth = 0.5d+00*(br-bl)
centr = 0.5d+00*(br+bl)
fix = b-centr
fval(1) = 0.5d+00*f(hlgth+centr)*(fix-hlgth)**beta
fval(13) = f(centr)*(fix**beta)
fval(25) = 0.5d+00*f(centr-hlgth)*(fix+hlgth)**beta
do 20 i=2,12
u = hlgth*x(i-1)
isym = 26-i
fval(i) = f(u+centr)*(fix-u)**beta
fval(isym) = f(centr-u)*(fix+u)**beta
20 continue
factor = hlgth**(alfa+0.1d+01)
result = 0.0d+00
abserr = 0.0d+00
res12 = 0.0d+00
res24 = 0.0d+00
if(integr.gt.2) go to 70
call dqcheb(x,fval,cheb12,cheb24)
c
c integr = 1 (or 2)
c
do 30 i=1,13
res12 = res12+cheb12(i)*ri(i)
res24 = res24+cheb24(i)*ri(i)
30 continue
do 40 i=14,25
res24 = res24+cheb24(i)*ri(i)
40 continue
if(integr.eq.1) go to 130
c
c integr = 2
c
dc = dlog(br-bl)
result = res24*dc
abserr = dabs((res24-res12)*dc)
res12 = 0.0d+00
res24 = 0.0d+00
do 50 i=1,13
res12 = res12+cheb12(i)*rg(i)
res24 = res12+cheb24(i)*rg(i)
50 continue
do 60 i=14,25
res24 = res24+cheb24(i)*rg(i)
60 continue
go to 130
c
c compute the chebyshev series expansion of the
c following function
c f4 = f1*log(0.5*(b+b-br-a)-0.5*(br-a)*x)
c
70 fval(1) = fval(1)*dlog(fix-hlgth)
fval(13) = fval(13)*dlog(fix)
fval(25) = fval(25)*dlog(fix+hlgth)
do 80 i=2,12
u = hlgth*x(i-1)
isym = 26-i
fval(i) = fval(i)*dlog(fix-u)
fval(isym) = fval(isym)*dlog(fix+u)
80 continue
call dqcheb(x,fval,cheb12,cheb24)
c
c integr = 3 (or 4)
c
do 90 i=1,13
res12 = res12+cheb12(i)*ri(i)
res24 = res24+cheb24(i)*ri(i)
90 continue
do 100 i=14,25
res24 = res24+cheb24(i)*ri(i)
100 continue
if(integr.eq.3) go to 130
c
c integr = 4
c
dc = dlog(br-bl)
result = res24*dc
abserr = dabs((res24-res12)*dc)
res12 = 0.0d+00
res24 = 0.0d+00
do 110 i=1,13
res12 = res12+cheb12(i)*rg(i)
res24 = res24+cheb24(i)*rg(i)
110 continue
do 120 i=14,25
res24 = res24+cheb24(i)*rg(i)
120 continue
130 result = (result+res24)*factor
abserr = (abserr+dabs(res24-res12))*factor
go to 270
c
c this part of the program is executed only if b = br.
c ----------------------------------------------------
c
c compute the chebyshev series expansion of the
c following function
c f2 = (0.5*(b+bl-a-a)+0.5*(b-bl)*x)**alfa
c *f(0.5*(b-bl)*x+0.5*(b+bl))
c
140 hlgth = 0.5d+00*(br-bl)
centr = 0.5d+00*(br+bl)
fix = centr-a
fval(1) = 0.5d+00*f(hlgth+centr)*(fix+hlgth)**alfa
fval(13) = f(centr)*(fix**alfa)
fval(25) = 0.5d+00*f(centr-hlgth)*(fix-hlgth)**alfa
do 150 i=2,12
u = hlgth*x(i-1)
isym = 26-i
fval(i) = f(u+centr)*(fix+u)**alfa
fval(isym) = f(centr-u)*(fix-u)**alfa
150 continue
factor = hlgth**(beta+0.1d+01)
result = 0.0d+00
abserr = 0.0d+00
res12 = 0.0d+00
res24 = 0.0d+00
if(integr.eq.2.or.integr.eq.4) go to 200
c
c integr = 1 (or 3)
c
call dqcheb(x,fval,cheb12,cheb24)
do 160 i=1,13
res12 = res12+cheb12(i)*rj(i)
res24 = res24+cheb24(i)*rj(i)
160 continue
do 170 i=14,25
res24 = res24+cheb24(i)*rj(i)
170 continue
if(integr.eq.1) go to 260
c
c integr = 3
c
dc = dlog(br-bl)
result = res24*dc
abserr = dabs((res24-res12)*dc)
res12 = 0.0d+00
res24 = 0.0d+00
do 180 i=1,13
res12 = res12+cheb12(i)*rh(i)
res24 = res24+cheb24(i)*rh(i)
180 continue
do 190 i=14,25
res24 = res24+cheb24(i)*rh(i)
190 continue
go to 260
c
c compute the chebyshev series expansion of the
c following function
c f3 = f2*log(0.5*(b-bl)*x+0.5*(b+bl-a-a))
c
200 fval(1) = fval(1)*dlog(hlgth+fix)
fval(13) = fval(13)*dlog(fix)
fval(25) = fval(25)*dlog(fix-hlgth)
do 210 i=2,12
u = hlgth*x(i-1)
isym = 26-i
fval(i) = fval(i)*dlog(u+fix)
fval(isym) = fval(isym)*dlog(fix-u)
210 continue
call dqcheb(x,fval,cheb12,cheb24)
c
c integr = 2 (or 4)
c
do 220 i=1,13
res12 = res12+cheb12(i)*rj(i)
res24 = res24+cheb24(i)*rj(i)
220 continue
do 230 i=14,25
res24 = res24+cheb24(i)*rj(i)
230 continue
if(integr.eq.2) go to 260
dc = dlog(br-bl)
result = res24*dc
abserr = dabs((res24-res12)*dc)
res12 = 0.0d+00
res24 = 0.0d+00
c
c integr = 4
c
do 240 i=1,13
res12 = res12+cheb12(i)*rh(i)
res24 = res24+cheb24(i)*rh(i)
240 continue
do 250 i=14,25
res24 = res24+cheb24(i)*rh(i)
250 continue
260 result = (result+res24)*factor
abserr = (abserr+dabs(res24-res12))*factor
270 return
end
|