File: dqk15.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (174 lines) | stat: -rw-r--r-- 6,607 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
      subroutine dqk15(f,a,b,result,abserr,resabs,resasc)
c***begin prologue  dqk15
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a1a2
c***keywords  15-point gauss-kronrod rules
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div - k.u.leuven
c***purpose  to compute i = integral of f over (a,b), with error
c                           estimate
c                       j = integral of abs(f) over (a,b)
c***description
c
c           integration rules
c           standard fortran subroutine
c           double precision version
c
c           parameters
c            on entry
c              f      - double precision
c                       function subprogram defining the integrand
c                       function f(x). the actual name for f needs to be
c                       declared e x t e r n a l in the calling program.
c
c              a      - double precision
c                       lower limit of integration
c
c              b      - double precision
c                       upper limit of integration
c
c            on return
c              result - double precision
c                       approximation to the integral i
c                       result is computed by applying the 15-point
c                       kronrod rule (resk) obtained by optimal addition
c                       of abscissae to the7-point gauss rule(resg).
c
c              abserr - double precision
c                       estimate of the modulus of the absolute error,
c                       which should not exceed abs(i-result)
c
c              resabs - double precision
c                       approximation to the integral j
c
c              resasc - double precision
c                       approximation to the integral of abs(f-i/(b-a))
c                       over (a,b)
c
c***references  (none)
c***routines called  d1mach
c***end prologue  dqk15
c
      double precision a,absc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1,
     *  d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc,
     *  resg,resk,reskh,result,uflow,wg,wgk,xgk
      integer j,jtw,jtwm1
      external f
c
      dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8)
c
c           the abscissae and weights are given for the interval (-1,1).
c           because of symmetry only the positive abscissae and their
c           corresponding weights are given.
c
c           xgk    - abscissae of the 15-point kronrod rule
c                    xgk(2), xgk(4), ...  abscissae of the 7-point
c                    gauss rule
c                    xgk(1), xgk(3), ...  abscissae which are optimally
c                    added to the 7-point gauss rule
c
c           wgk    - weights of the 15-point kronrod rule
c
c           wg     - weights of the 7-point gauss rule
c
c
c gauss quadrature weights and kronron quadrature abscissae and weights
c as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
c bell labs, nov. 1981.
c
      data wg  (  1) / 0.1294849661 6886969327 0611432679 082 d0 /
      data wg  (  2) / 0.2797053914 8927666790 1467771423 780 d0 /
      data wg  (  3) / 0.3818300505 0511894495 0369775488 975 d0 /
      data wg  (  4) / 0.4179591836 7346938775 5102040816 327 d0 /
c
      data xgk (  1) / 0.9914553711 2081263920 6854697526 329 d0 /
      data xgk (  2) / 0.9491079123 4275852452 6189684047 851 d0 /
      data xgk (  3) / 0.8648644233 5976907278 9712788640 926 d0 /
      data xgk (  4) / 0.7415311855 9939443986 3864773280 788 d0 /
      data xgk (  5) / 0.5860872354 6769113029 4144838258 730 d0 /
      data xgk (  6) / 0.4058451513 7739716690 6606412076 961 d0 /
      data xgk (  7) / 0.2077849550 0789846760 0689403773 245 d0 /
      data xgk (  8) / 0.0000000000 0000000000 0000000000 000 d0 /
c
      data wgk (  1) / 0.0229353220 1052922496 3732008058 970 d0 /
      data wgk (  2) / 0.0630920926 2997855329 0700663189 204 d0 /
      data wgk (  3) / 0.1047900103 2225018383 9876322541 518 d0 /
      data wgk (  4) / 0.1406532597 1552591874 5189590510 238 d0 /
      data wgk (  5) / 0.1690047266 3926790282 6583426598 550 d0 /
      data wgk (  6) / 0.1903505780 6478540991 3256402421 014 d0 /
      data wgk (  7) / 0.2044329400 7529889241 4161999234 649 d0 /
      data wgk (  8) / 0.2094821410 8472782801 2999174891 714 d0 /
c
c
c           list of major variables
c           -----------------------
c
c           centr  - mid point of the interval
c           hlgth  - half-length of the interval
c           absc   - abscissa
c           fval*  - function value
c           resg   - result of the 7-point gauss formula
c           resk   - result of the 15-point kronrod formula
c           reskh  - approximation to the mean value of f over (a,b),
c                    i.e. to i/(b-a)
c
c           machine dependent constants
c           ---------------------------
c
c           epmach is the largest relative spacing.
c           uflow is the smallest positive magnitude.
c
c***first executable statement  dqk15
      epmach = d1mach(4)
      uflow = d1mach(1)
c
      centr = 0.5d+00*(a+b)
      hlgth = 0.5d+00*(b-a)
      dhlgth = dabs(hlgth)
c
c           compute the 15-point kronrod approximation to
c           the integral, and estimate the absolute error.
c
      fc = f(centr)
      resg = fc*wg(4)
      resk = fc*wgk(8)
      resabs = dabs(resk)
      do 10 j=1,3
        jtw = j*2
        absc = hlgth*xgk(jtw)
        fval1 = f(centr-absc)
        fval2 = f(centr+absc)
        fv1(jtw) = fval1
        fv2(jtw) = fval2
        fsum = fval1+fval2
        resg = resg+wg(j)*fsum
        resk = resk+wgk(jtw)*fsum
        resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
   10 continue
      do 15 j = 1,4
        jtwm1 = j*2-1
        absc = hlgth*xgk(jtwm1)
        fval1 = f(centr-absc)
        fval2 = f(centr+absc)
        fv1(jtwm1) = fval1
        fv2(jtwm1) = fval2
        fsum = fval1+fval2
        resk = resk+wgk(jtwm1)*fsum
        resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
   15 continue
      reskh = resk*0.5d+00
      resasc = wgk(8)*dabs(fc-reskh)
      do 20 j=1,7
        resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
   20 continue
      result = resk*hlgth
      resabs = resabs*dhlgth
      resasc = resasc*dhlgth
      abserr = dabs((resk-resg)*hlgth)
      if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00)
     *  abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
      if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1
     *  ((epmach*0.5d+02)*resabs,abserr)
      return
      end