1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
subroutine dqk61(f,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk61
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a2
c***keywords 61-point gauss-kronrod rules
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose to compute i = integral of f over (a,b) with error
c estimate
c j = integral of dabs(f) over (a,b)
c***description
c
c integration rule
c standard fortran subroutine
c double precision version
c
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the calling program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c on return
c result - double precision
c approximation to the integral i
c result is computed by applying the 61-point
c kronrod rule (resk) obtained by optimal addition of
c abscissae to the 30-point gauss rule (resg).
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed dabs(i-result)
c
c resabs - double precision
c approximation to the integral j
c
c resasc - double precision
c approximation to the integral of dabs(f-i/(b-a))
c
c
c***references (none)
c***routines called d1mach
c***end prologue dqk61
c
double precision a,dabsc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1,
* d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc,
* resg,resk,reskh,result,uflow,wg,wgk,xgk
integer j,jtw,jtwm1
external f
c
dimension fv1(30),fv2(30),xgk(31),wgk(31),wg(15)
c
c the abscissae and weights are given for the
c interval (-1,1). because of symmetry only the positive
c abscissae and their corresponding weights are given.
c
c xgk - abscissae of the 61-point kronrod rule
c xgk(2), xgk(4) ... abscissae of the 30-point
c gauss rule
c xgk(1), xgk(3) ... optimally added abscissae
c to the 30-point gauss rule
c
c wgk - weights of the 61-point kronrod rule
c
c wg - weigths of the 30-point gauss rule
c
c
c gauss quadrature weights and kronron quadrature abscissae and weights
c as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
c bell labs, nov. 1981.
c
data wg ( 1) / 0.0079681924 9616660561 5465883474 674 d0 /
data wg ( 2) / 0.0184664683 1109095914 2302131912 047 d0 /
data wg ( 3) / 0.0287847078 8332336934 9719179611 292 d0 /
data wg ( 4) / 0.0387991925 6962704959 6801936446 348 d0 /
data wg ( 5) / 0.0484026728 3059405290 2938140422 808 d0 /
data wg ( 6) / 0.0574931562 1761906648 1721689402 056 d0 /
data wg ( 7) / 0.0659742298 8218049512 8128515115 962 d0 /
data wg ( 8) / 0.0737559747 3770520626 8243850022 191 d0 /
data wg ( 9) / 0.0807558952 2942021535 4694938460 530 d0 /
data wg ( 10) / 0.0868997872 0108297980 2387530715 126 d0 /
data wg ( 11) / 0.0921225222 3778612871 7632707087 619 d0 /
data wg ( 12) / 0.0963687371 7464425963 9468626351 810 d0 /
data wg ( 13) / 0.0995934205 8679526706 2780282103 569 d0 /
data wg ( 14) / 0.1017623897 4840550459 6428952168 554 d0 /
data wg ( 15) / 0.1028526528 9355884034 1285636705 415 d0 /
c
data xgk ( 1) / 0.9994844100 5049063757 1325895705 811 d0 /
data xgk ( 2) / 0.9968934840 7464954027 1630050918 695 d0 /
data xgk ( 3) / 0.9916309968 7040459485 8628366109 486 d0 /
data xgk ( 4) / 0.9836681232 7974720997 0032581605 663 d0 /
data xgk ( 5) / 0.9731163225 0112626837 4693868423 707 d0 /
data xgk ( 6) / 0.9600218649 6830751221 6871025581 798 d0 /
data xgk ( 7) / 0.9443744447 4855997941 5831324037 439 d0 /
data xgk ( 8) / 0.9262000474 2927432587 9324277080 474 d0 /
data xgk ( 9) / 0.9055733076 9990779854 6522558925 958 d0 /
data xgk ( 10) / 0.8825605357 9205268154 3116462530 226 d0 /
data xgk ( 11) / 0.8572052335 4606109895 8658510658 944 d0 /
data xgk ( 12) / 0.8295657623 8276839744 2898119732 502 d0 /
data xgk ( 13) / 0.7997278358 2183908301 3668942322 683 d0 /
data xgk ( 14) / 0.7677774321 0482619491 7977340974 503 d0 /
data xgk ( 15) / 0.7337900624 5322680472 6171131369 528 d0 /
data xgk ( 16) / 0.6978504947 9331579693 2292388026 640 d0 /
data xgk ( 17) / 0.6600610641 2662696137 0053668149 271 d0 /
data xgk ( 18) / 0.6205261829 8924286114 0477556431 189 d0 /
data xgk ( 19) / 0.5793452358 2636169175 6024932172 540 d0 /
data xgk ( 20) / 0.5366241481 4201989926 4169793311 073 d0 /
data xgk ( 21) / 0.4924804678 6177857499 3693061207 709 d0 /
data xgk ( 22) / 0.4470337695 3808917678 0609900322 854 d0 /
data xgk ( 23) / 0.4004012548 3039439253 5476211542 661 d0 /
data xgk ( 24) / 0.3527047255 3087811347 1037207089 374 d0 /
data xgk ( 25) / 0.3040732022 7362507737 2677107199 257 d0 /
data xgk ( 26) / 0.2546369261 6788984643 9805129817 805 d0 /
data xgk ( 27) / 0.2045251166 8230989143 8957671002 025 d0 /
data xgk ( 28) / 0.1538699136 0858354696 3794672743 256 d0 /
data xgk ( 29) / 0.1028069379 6673703014 7096751318 001 d0 /
data xgk ( 30) / 0.0514718425 5531769583 3025213166 723 d0 /
data xgk ( 31) / 0.0000000000 0000000000 0000000000 000 d0 /
c
data wgk ( 1) / 0.0013890136 9867700762 4551591226 760 d0 /
data wgk ( 2) / 0.0038904611 2709988405 1267201844 516 d0 /
data wgk ( 3) / 0.0066307039 1593129217 3319826369 750 d0 /
data wgk ( 4) / 0.0092732796 5951776342 8441146892 024 d0 /
data wgk ( 5) / 0.0118230152 5349634174 2232898853 251 d0 /
data wgk ( 6) / 0.0143697295 0704580481 2451432443 580 d0 /
data wgk ( 7) / 0.0169208891 8905327262 7572289420 322 d0 /
data wgk ( 8) / 0.0194141411 9394238117 3408951050 128 d0 /
data wgk ( 9) / 0.0218280358 2160919229 7167485738 339 d0 /
data wgk ( 10) / 0.0241911620 7808060136 5686370725 232 d0 /
data wgk ( 11) / 0.0265099548 8233310161 0601709335 075 d0 /
data wgk ( 12) / 0.0287540487 6504129284 3978785354 334 d0 /
data wgk ( 13) / 0.0309072575 6238776247 2884252943 092 d0 /
data wgk ( 14) / 0.0329814470 5748372603 1814191016 854 d0 /
data wgk ( 15) / 0.0349793380 2806002413 7499670731 468 d0 /
data wgk ( 16) / 0.0368823646 5182122922 3911065617 136 d0 /
data wgk ( 17) / 0.0386789456 2472759295 0348651532 281 d0 /
data wgk ( 18) / 0.0403745389 5153595911 1995279752 468 d0 /
data wgk ( 19) / 0.0419698102 1516424614 7147541285 970 d0 /
data wgk ( 20) / 0.0434525397 0135606931 6831728117 073 d0 /
data wgk ( 21) / 0.0448148001 3316266319 2355551616 723 d0 /
data wgk ( 22) / 0.0460592382 7100698811 6271735559 374 d0 /
data wgk ( 23) / 0.0471855465 6929915394 5261478181 099 d0 /
data wgk ( 24) / 0.0481858617 5708712914 0779492298 305 d0 /
data wgk ( 25) / 0.0490554345 5502977888 7528165367 238 d0 /
data wgk ( 26) / 0.0497956834 2707420635 7811569379 942 d0 /
data wgk ( 27) / 0.0504059214 0278234684 0893085653 585 d0 /
data wgk ( 28) / 0.0508817958 9874960649 2297473049 805 d0 /
data wgk ( 29) / 0.0512215478 4925877217 0656282604 944 d0 /
data wgk ( 30) / 0.0514261285 3745902593 3862879215 781 d0 /
data wgk ( 31) / 0.0514947294 2945156755 8340433647 099 d0 /
c
c list of major variables
c -----------------------
c
c centr - mid point of the interval
c hlgth - half-length of the interval
c dabsc - abscissa
c fval* - function value
c resg - result of the 30-point gauss rule
c resk - result of the 61-point kronrod rule
c reskh - approximation to the mean value of f
c over (a,b), i.e. to i/(b-a)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
epmach = d1mach(4)
uflow = d1mach(1)
c
centr = 0.5d+00*(b+a)
hlgth = 0.5d+00*(b-a)
dhlgth = dabs(hlgth)
c
c compute the 61-point kronrod approximation to the
c integral, and estimate the absolute error.
c
c***first executable statement dqk61
resg = 0.0d+00
fc = f(centr)
resk = wgk(31)*fc
resabs = dabs(resk)
do 10 j=1,15
jtw = j*2
dabsc = hlgth*xgk(jtw)
fval1 = f(centr-dabsc)
fval2 = f(centr+dabsc)
fv1(jtw) = fval1
fv2(jtw) = fval2
fsum = fval1+fval2
resg = resg+wg(j)*fsum
resk = resk+wgk(jtw)*fsum
resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
10 continue
do 15 j=1,15
jtwm1 = j*2-1
dabsc = hlgth*xgk(jtwm1)
fval1 = f(centr-dabsc)
fval2 = f(centr+dabsc)
fv1(jtwm1) = fval1
fv2(jtwm1) = fval2
fsum = fval1+fval2
resk = resk+wgk(jtwm1)*fsum
resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
15 continue
reskh = resk*0.5d+00
resasc = wgk(31)*dabs(fc-reskh)
do 20 j=1,30
resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
20 continue
result = resk*hlgth
resabs = resabs*dhlgth
resasc = resasc*dhlgth
abserr = dabs((resk-resg)*hlgth)
if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00)
* abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1
* ((epmach*0.5d+02)*resabs,abserr)
return
end
|