1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
from __future__ import division, print_function, absolute_import
import itertools
import numpy as np
from numpy.testing import run_module_suite, assert_allclose
from scipy.integrate import ode
def _band_count(a):
"""Returns ml and mu, the lower and upper band sizes of a."""
nrows, ncols = a.shape
ml = 0
for k in range(-nrows+1, 0):
if np.diag(a, k).any():
ml = -k
break
mu = 0
for k in range(nrows-1, 0, -1):
if np.diag(a, k).any():
mu = k
break
return ml, mu
def _linear_func(t, y, a):
"""Linear system dy/dt = a * y"""
return a.dot(y)
def _linear_jac(t, y, a):
"""Jacobian of a * y is a."""
return a
def _linear_banded_jac(t, y, a):
"""Banded Jacobian."""
ml, mu = _band_count(a)
bjac = []
for k in range(mu, 0, -1):
bjac.append(np.r_[[0] * k, np.diag(a, k)])
bjac.append(np.diag(a))
for k in range(-1, -ml-1, -1):
bjac.append(np.r_[np.diag(a, k), [0] * (-k)])
return bjac
def _solve_linear_sys(a, y0, tend=1, dt=0.1,
solver=None, method='bdf', use_jac=True,
with_jacobian=False, banded=False):
"""Use scipy.integrate.ode to solve a linear system of ODEs.
a : square ndarray
Matrix of the linear system to be solved.
y0 : ndarray
Initial condition
tend : float
Stop time.
dt : float
Step size of the output.
solver : str
If not None, this must be "vode", "lsoda" or "zvode".
method : str
Either "bdf" or "adams".
use_jac : bool
Determines if the jacobian function is passed to ode().
with_jacobian : bool
Passed to ode.set_integrator().
banded : bool
Determines whether a banded or full jacobian is used.
If `banded` is True, `lband` and `uband` are determined by the
values in `a`.
"""
if banded:
lband, uband = _band_count(a)
else:
lband = None
uband = None
if use_jac:
if banded:
r = ode(_linear_func, _linear_banded_jac)
else:
r = ode(_linear_func, _linear_jac)
else:
r = ode(_linear_func)
if solver is None:
if np.iscomplexobj(a):
solver = "zvode"
else:
solver = "vode"
r.set_integrator(solver,
with_jacobian=with_jacobian,
method=method,
lband=lband, uband=uband,
rtol=1e-9, atol=1e-10,
)
t0 = 0
r.set_initial_value(y0, t0)
r.set_f_params(a)
r.set_jac_params(a)
t = [t0]
y = [y0]
while r.successful() and r.t < tend:
r.integrate(r.t + dt)
t.append(r.t)
y.append(r.y)
t = np.array(t)
y = np.array(y)
return t, y
def _analytical_solution(a, y0, t):
"""
Analytical solution to the linear differential equations dy/dt = a*y.
The solution is only valid if `a` is diagonalizable.
Returns a 2-d array with shape (len(t), len(y0)).
"""
lam, v = np.linalg.eig(a)
c = np.linalg.solve(v, y0)
e = c * np.exp(lam * t.reshape(-1, 1))
sol = e.dot(v.T)
return sol
def test_banded_ode_solvers():
# Test the "lsoda", "vode" and "zvode" solvers of the `ode` class
# with a system that has a banded Jacobian matrix.
t_exact = np.linspace(0, 1.0, 5)
# --- Real arrays for testing the "lsoda" and "vode" solvers ---
# lband = 2, uband = 1:
a_real = np.array([[-0.6, 0.1, 0.0, 0.0, 0.0],
[0.2, -0.5, 0.9, 0.0, 0.0],
[0.1, 0.1, -0.4, 0.1, 0.0],
[0.0, 0.3, -0.1, -0.9, -0.3],
[0.0, 0.0, 0.1, 0.1, -0.7]])
# lband = 0, uband = 1:
a_real_upper = np.triu(a_real)
# lband = 2, uband = 0:
a_real_lower = np.tril(a_real)
# lband = 0, uband = 0:
a_real_diag = np.triu(a_real_lower)
real_matrices = [a_real, a_real_upper, a_real_lower, a_real_diag]
real_solutions = []
for a in real_matrices:
y0 = np.arange(1, a.shape[0] + 1)
y_exact = _analytical_solution(a, y0, t_exact)
real_solutions.append((y0, t_exact, y_exact))
def check_real(idx, solver, meth, use_jac, with_jac, banded):
a = real_matrices[idx]
y0, t_exact, y_exact = real_solutions[idx]
t, y = _solve_linear_sys(a, y0,
tend=t_exact[-1],
dt=t_exact[1] - t_exact[0],
solver=solver,
method=meth,
use_jac=use_jac,
with_jacobian=with_jac,
banded=banded)
assert_allclose(t, t_exact)
assert_allclose(y, y_exact)
for idx in range(len(real_matrices)):
p = [['vode', 'lsoda'], # solver
['bdf', 'adams'], # method
[False, True], # use_jac
[False, True], # with_jacobian
[False, True]] # banded
for solver, meth, use_jac, with_jac, banded in itertools.product(*p):
yield check_real, idx, solver, meth, use_jac, with_jac, banded
# --- Complex arrays for testing the "zvode" solver ---
# complex, lband = 2, uband = 1:
a_complex = a_real - 0.5j * a_real
# complex, lband = 0, uband = 0:
a_complex_diag = np.diag(np.diag(a_complex))
complex_matrices = [a_complex, a_complex_diag]
complex_solutions = []
for a in complex_matrices:
y0 = np.arange(1, a.shape[0] + 1) + 1j
y_exact = _analytical_solution(a, y0, t_exact)
complex_solutions.append((y0, t_exact, y_exact))
def check_complex(idx, solver, meth, use_jac, with_jac, banded):
a = complex_matrices[idx]
y0, t_exact, y_exact = complex_solutions[idx]
t, y = _solve_linear_sys(a, y0,
tend=t_exact[-1],
dt=t_exact[1] - t_exact[0],
solver=solver,
method=meth,
use_jac=use_jac,
with_jacobian=with_jac,
banded=banded)
assert_allclose(t, t_exact)
assert_allclose(y, y_exact)
for idx in range(len(complex_matrices)):
p = [['bdf', 'adams'], # method
[False, True], # use_jac
[False, True], # with_jacobian
[False, True]] # banded
for meth, use_jac, with_jac, banded in itertools.product(*p):
yield check_complex, idx, "zvode", meth, use_jac, with_jac, banded
if __name__ == "__main__":
run_module_suite()
|