1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy import cos, sin, pi
from numpy.testing import TestCase, run_module_suite, assert_equal, \
assert_almost_equal, assert_allclose, assert_
from scipy.integrate import (quadrature, romberg, romb, newton_cotes,
cumtrapz, quad, simps)
from scipy.integrate.quadrature import AccuracyWarning
class TestQuadrature(TestCase):
def quad(self, x, a, b, args):
raise NotImplementedError
def test_quadrature(self):
# Typical function with two extra arguments:
def myfunc(x, n, z): # Bessel function integrand
return cos(n*x-z*sin(x))/pi
val, err = quadrature(myfunc, 0, pi, (2, 1.8))
table_val = 0.30614353532540296487
assert_almost_equal(val, table_val, decimal=7)
def test_quadrature_rtol(self):
def myfunc(x, n, z): # Bessel function integrand
return 1e90 * cos(n*x-z*sin(x))/pi
val, err = quadrature(myfunc, 0, pi, (2, 1.8), rtol=1e-10)
table_val = 1e90 * 0.30614353532540296487
assert_allclose(val, table_val, rtol=1e-10)
def test_quadrature_miniter(self):
# Typical function with two extra arguments:
def myfunc(x, n, z): # Bessel function integrand
return cos(n*x-z*sin(x))/pi
table_val = 0.30614353532540296487
for miniter in [5, 52]:
val, err = quadrature(myfunc, 0, pi, (2, 1.8), miniter=miniter)
assert_almost_equal(val, table_val, decimal=7)
assert_(err < 1.0)
def test_quadrature_single_args(self):
def myfunc(x, n):
return 1e90 * cos(n*x-1.8*sin(x))/pi
val, err = quadrature(myfunc, 0, pi, args=2, rtol=1e-10)
table_val = 1e90 * 0.30614353532540296487
assert_allclose(val, table_val, rtol=1e-10)
def test_romberg(self):
# Typical function with two extra arguments:
def myfunc(x, n, z): # Bessel function integrand
return cos(n*x-z*sin(x))/pi
val = romberg(myfunc, 0, pi, args=(2, 1.8))
table_val = 0.30614353532540296487
assert_almost_equal(val, table_val, decimal=7)
def test_romberg_rtol(self):
# Typical function with two extra arguments:
def myfunc(x, n, z): # Bessel function integrand
return 1e19*cos(n*x-z*sin(x))/pi
val = romberg(myfunc, 0, pi, args=(2, 1.8), rtol=1e-10)
table_val = 1e19*0.30614353532540296487
assert_allclose(val, table_val, rtol=1e-10)
def test_romb(self):
assert_equal(romb(np.arange(17)), 128)
def test_romb_gh_3731(self):
# Check that romb makes maximal use of data points
x = np.arange(2**4+1)
y = np.cos(0.2*x)
val = romb(y)
val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
assert_allclose(val, val2, rtol=1e-8, atol=0)
# should be equal to romb with 2**k+1 samples
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=AccuracyWarning)
val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(),
divmax=4)
assert_allclose(val, val3, rtol=1e-12, atol=0)
def test_non_dtype(self):
# Check that we work fine with functions returning float
import math
valmath = romberg(math.sin, 0, 1)
expected_val = 0.45969769413185085
assert_almost_equal(valmath, expected_val, decimal=7)
def test_newton_cotes(self):
"""Test the first few degrees, for evenly spaced points."""
n = 1
wts, errcoff = newton_cotes(n, 1)
assert_equal(wts, n*np.array([0.5, 0.5]))
assert_almost_equal(errcoff, -n**3/12.0)
n = 2
wts, errcoff = newton_cotes(n, 1)
assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
assert_almost_equal(errcoff, -n**5/2880.0)
n = 3
wts, errcoff = newton_cotes(n, 1)
assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
assert_almost_equal(errcoff, -n**5/6480.0)
n = 4
wts, errcoff = newton_cotes(n, 1)
assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
assert_almost_equal(errcoff, -n**7/1935360.0)
def test_newton_cotes2(self):
"""Test newton_cotes with points that are not evenly spaced."""
x = np.array([0.0, 1.5, 2.0])
y = x**2
wts, errcoff = newton_cotes(x)
exact_integral = 8.0/3
numeric_integral = np.dot(wts, y)
assert_almost_equal(numeric_integral, exact_integral)
x = np.array([0.0, 1.4, 2.1, 3.0])
y = x**2
wts, errcoff = newton_cotes(x)
exact_integral = 9.0
numeric_integral = np.dot(wts, y)
assert_almost_equal(numeric_integral, exact_integral)
def test_simps(self):
y = np.arange(17)
assert_equal(simps(y), 128)
assert_equal(simps(y, dx=0.5), 64)
assert_equal(simps(y, x=np.linspace(0, 4, 17)), 32)
y = np.arange(4)
x = 2**y
assert_equal(simps(y, x=x, even='avg'), 13.875)
assert_equal(simps(y, x=x, even='first'), 13.75)
assert_equal(simps(y, x=x, even='last'), 14)
class TestCumtrapz(TestCase):
def test_1d(self):
x = np.linspace(-2, 2, num=5)
y = x
y_int = cumtrapz(y, x, initial=0)
y_expected = [0., -1.5, -2., -1.5, 0.]
assert_allclose(y_int, y_expected)
y_int = cumtrapz(y, x, initial=None)
assert_allclose(y_int, y_expected[1:])
def test_y_nd_x_nd(self):
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
y = x
y_int = cumtrapz(y, x, initial=0)
y_expected = np.array([[[0., 0.5, 2., 4.5],
[0., 4.5, 10., 16.5]],
[[0., 8.5, 18., 28.5],
[0., 12.5, 26., 40.5]],
[[0., 16.5, 34., 52.5],
[0., 20.5, 42., 64.5]]])
assert_allclose(y_int, y_expected)
# Try with all axes
shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
for axis, shape in zip([0, 1, 2], shapes):
y_int = cumtrapz(y, x, initial=3.45, axis=axis)
assert_equal(y_int.shape, (3, 2, 4))
y_int = cumtrapz(y, x, initial=None, axis=axis)
assert_equal(y_int.shape, shape)
def test_y_nd_x_1d(self):
y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
x = np.arange(4)**2
# Try with all axes
ys_expected = (
np.array([[[4., 5., 6., 7.],
[8., 9., 10., 11.]],
[[40., 44., 48., 52.],
[56., 60., 64., 68.]]]),
np.array([[[2., 3., 4., 5.]],
[[10., 11., 12., 13.]],
[[18., 19., 20., 21.]]]),
np.array([[[0.5, 5., 17.5],
[4.5, 21., 53.5]],
[[8.5, 37., 89.5],
[12.5, 53., 125.5]],
[[16.5, 69., 161.5],
[20.5, 85., 197.5]]]))
for axis, y_expected in zip([0, 1, 2], ys_expected):
y_int = cumtrapz(y, x=x[:y.shape[axis]], axis=axis, initial=None)
assert_allclose(y_int, y_expected)
def test_x_none(self):
y = np.linspace(-2, 2, num=5)
y_int = cumtrapz(y)
y_expected = [-1.5, -2., -1.5, 0.]
assert_allclose(y_int, y_expected)
y_int = cumtrapz(y, initial=1.23)
y_expected = [1.23, -1.5, -2., -1.5, 0.]
assert_allclose(y_int, y_expected)
y_int = cumtrapz(y, dx=3)
y_expected = [-4.5, -6., -4.5, 0.]
assert_allclose(y_int, y_expected)
y_int = cumtrapz(y, dx=3, initial=1.23)
y_expected = [1.23, -4.5, -6., -4.5, 0.]
assert_allclose(y_int, y_expected)
if __name__ == "__main__":
run_module_suite()
|