1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
subroutine fourco(t,n,c,alfa,m,ress,resc,wrk1,wrk2,ier)
c subroutine fourco calculates the integrals
c /t(n-3)
c ress(i) = ! s(x)*sin(alfa(i)*x) dx and
c t(4)/
c /t(n-3)
c resc(i) = ! s(x)*cos(alfa(i)*x) dx, i=1,...,m,
c t(4)/
c where s(x) denotes a cubic spline which is given in its
c b-spline representation.
c
c calling sequence:
c call fourco(t,n,c,alfa,m,ress,resc,wrk1,wrk2,ier)
c
c input parameters:
c t : real array,length n, containing the knots of s(x).
c n : integer, containing the total number of knots. n>=10.
c c : real array,length n, containing the b-spline coefficients.
c alfa : real array,length m, containing the parameters alfa(i).
c m : integer, specifying the number of integrals to be computed.
c wrk1 : real array,length n. used as working space
c wrk2 : real array,length n. used as working space
c
c output parameters:
c ress : real array,length m, containing the integrals ress(i).
c resc : real array,length m, containing the integrals resc(i).
c ier : error flag:
c ier=0 : normal return.
c ier=10: invalid input data (see restrictions).
c
c restrictions:
c n >= 10
c t(4) < t(5) < ... < t(n-4) < t(n-3).
c t(1) <= t(2) <= t(3) <= t(4).
c t(n-3) <= t(n-2) <= t(n-1) <= t(n).
c
c other subroutines required: fpbfou,fpcsin
c
c references :
c dierckx p. : calculation of fouriercoefficients of discrete
c functions using cubic splines. j. computational
c and applied mathematics 3 (1977) 207-209.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c ..scalar arguments..
integer n,m,ier
c ..array arguments..
real*8 t(n),c(n),wrk1(n),wrk2(n),alfa(m),ress(m),resc(m)
c ..local scalars..
integer i,j,n4
real*8 rs,rc
c ..
n4 = n-4
c before starting computations a data check is made. in the input data
c are invalid, control is immediately repassed to the calling program.
ier = 10
if(n.lt.10) go to 50
j = n
do 10 i=1,3
if(t(i).gt.t(i+1)) go to 50
if(t(j).lt.t(j-1)) go to 50
j = j-1
10 continue
do 20 i=4,n4
if(t(i).ge.t(i+1)) go to 50
20 continue
ier = 0
c main loop for the different alfa(i).
do 40 i=1,m
c calculate the integrals
c wrk1(j) = integral(nj,4(x)*sin(alfa*x)) and
c wrk2(j) = integral(nj,4(x)*cos(alfa*x)), j=1,2,...,n-4,
c where nj,4(x) denotes the normalised cubic b-spline defined on the
c knots t(j),t(j+1),...,t(j+4).
call fpbfou(t,n,alfa(i),wrk1,wrk2)
c calculate the integrals ress(i) and resc(i).
rs = 0.
rc = 0.
do 30 j=1,n4
rs = rs+c(j)*wrk1(j)
rc = rc+c(j)*wrk2(j)
30 continue
ress(i) = rs
resc(i) = rc
40 continue
50 return
end
|