1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
subroutine fpader(t,n,c,k1,x,l,d)
c subroutine fpader calculates the derivatives
c (j-1)
c d(j) = s (x) , j=1,2,...,k1
c of a spline of order k1 at the point t(l)<=x<t(l+1), using the
c stable recurrence scheme of de boor
c ..
c ..scalar arguments..
real*8 x
integer n,k1,l
c ..array arguments..
real*8 t(n),c(n),d(k1)
c ..local scalars..
integer i,ik,j,jj,j1,j2,ki,kj,li,lj,lk
real*8 ak,fac,one
c ..local array..
real*8 h(20)
c ..
one = 0.1d+01
lk = l-k1
do 100 i=1,k1
ik = i+lk
h(i) = c(ik)
100 continue
kj = k1
fac = one
do 700 j=1,k1
ki = kj
j1 = j+1
if(j.eq.1) go to 300
i = k1
do 200 jj=j,k1
li = i+lk
lj = li+kj
h(i) = (h(i)-h(i-1))/(t(lj)-t(li))
i = i-1
200 continue
300 do 400 i=j,k1
d(i) = h(i)
400 continue
if(j.eq.k1) go to 600
do 500 jj=j1,k1
ki = ki-1
i = k1
do 500 j2=jj,k1
li = i+lk
lj = li+ki
d(i) = ((x-t(li))*d(i)+(t(lj)-x)*d(i-1))/(t(lj)-t(li))
i = i-1
500 continue
600 d(j) = d(k1)*fac
ak = k1-j
fac = fac*ak
kj = kj-1
700 continue
return
end
|