1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
subroutine fpclos(iopt,idim,m,u,mx,x,w,k,s,nest,tol,maxit,k1,k2,
* n,t,nc,c,fp,fpint,z,a1,a2,b,g1,g2,q,nrdata,ier)
c ..
c ..scalar arguments..
real*8 s,tol,fp
integer iopt,idim,m,mx,k,nest,maxit,k1,k2,n,nc,ier
c ..array arguments..
real*8 u(m),x(mx),w(m),t(nest),c(nc),fpint(nest),z(nc),a1(nest,k1)
*,
* a2(nest,k),b(nest,k2),g1(nest,k2),g2(nest,k1),q(m,k1)
integer nrdata(nest)
c ..local scalars..
real*8 acc,cos,d1,fac,fpart,fpms,fpold,fp0,f1,f2,f3,p,per,pinv,piv
*,
* p1,p2,p3,sin,store,term,ui,wi,rn,one,con1,con4,con9,half
integer i,ich1,ich3,ij,ik,it,iter,i1,i2,i3,j,jj,jk,jper,j1,j2,kk,
* kk1,k3,l,l0,l1,l5,mm,m1,new,nk1,nk2,nmax,nmin,nplus,npl1,
* nrint,n10,n11,n7,n8
c ..local arrays..
real*8 h(6),h1(7),h2(6),xi(10)
c ..function references..
real*8 abs,fprati
integer max0,min0
c ..subroutine references..
c fpbacp,fpbspl,fpgivs,fpdisc,fpknot,fprota
c ..
c set constants
one = 0.1e+01
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
half = 0.5e0
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position c
c ************************************************************** c
c given a set of knots we compute the least-squares closed curve c
c sinf(u). if the sum f(p=inf) <= s we accept the choice of knots. c
c if iopt=-1 sinf(u) is the requested curve c
c if iopt=0 or iopt=1 we check whether we can accept the knots: c
c if fp <=s we will continue with the current set of knots. c
c if fp > s we will increase the number of knots and compute the c
c corresponding least-squares curve until finally fp<=s. c
c the initial choice of knots depends on the value of s and iopt. c
c if s=0 we have spline interpolation; in that case the number of c
c knots equals nmax = m+2*k. c
c if s > 0 and c
c iopt=0 we first compute the least-squares polynomial curve of c
c degree k; n = nmin = 2*k+2. since s(u) must be periodic we c
c find that s(u) reduces to a fixed point. c
c iopt=1 we start with the set of knots found at the last c
c call of the routine, except for the case that s > fp0; then c
c we compute directly the least-squares polynomial curve. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
m1 = m-1
kk = k
kk1 = k1
k3 = 3*k+1
nmin = 2*k1
c determine the length of the period of the splines.
per = u(m)-u(1)
if(iopt.lt.0) go to 50
c calculation of acc, the absolute tolerance for the root of f(p)=s.
acc = tol*s
c determine nmax, the number of knots for periodic spline interpolation
nmax = m+2*k
if(s.gt.0. .or. nmax.eq.nmin) go to 30
c if s=0, s(u) is an interpolating curve.
n = nmax
c test whether the required storage space exceeds the available one.
if(n.gt.nest) go to 620
c find the position of the interior knots in case of interpolation.
5 if((k/2)*2 .eq.k) go to 20
do 10 i=2,m1
j = i+k
t(j) = u(i)
10 continue
if(s.gt.0.) go to 50
kk = k-1
kk1 = k
if(kk.gt.0) go to 50
t(1) = t(m)-per
t(2) = u(1)
t(m+1) = u(m)
t(m+2) = t(3)+per
jj = 0
do 15 i=1,m1
j = i
do 12 j1=1,idim
jj = jj+1
c(j) = x(jj)
j = j+n
12 continue
15 continue
jj = 1
j = m
do 17 j1=1,idim
c(j) = c(jj)
j = j+n
jj = jj+n
17 continue
fp = 0.
fpint(n) = fp0
fpint(n-1) = 0.
nrdata(n) = 0
go to 630
20 do 25 i=2,m1
j = i+k
t(j) = (u(i)+u(i-1))*half
25 continue
go to 50
c if s > 0 our initial choice depends on the value of iopt.
c if iopt=0 or iopt=1 and s>=fp0, we start computing the least-squares
c polynomial curve. (i.e. a constant point).
c if iopt=1 and fp0>s we start computing the least-squares closed
c curve according the set of knots found at the last call of the
c routine.
30 if(iopt.eq.0) go to 35
if(n.eq.nmin) go to 35
fp0 = fpint(n)
fpold = fpint(n-1)
nplus = nrdata(n)
if(fp0.gt.s) go to 50
c the case that s(u) is a fixed point is treated separetely.
c fp0 denotes the corresponding sum of squared residuals.
35 fp0 = 0.
d1 = 0.
do 37 j=1,idim
z(j) = 0.
37 continue
jj = 0
do 45 it=1,m1
wi = w(it)
call fpgivs(wi,d1,cos,sin)
do 40 j=1,idim
jj = jj+1
fac = wi*x(jj)
call fprota(cos,sin,fac,z(j))
fp0 = fp0+fac**2
40 continue
45 continue
do 47 j=1,idim
z(j) = z(j)/d1
47 continue
c test whether that fixed point is a solution of our problem.
fpms = fp0-s
if(fpms.lt.acc .or. nmax.eq.nmin) go to 640
fpold = fp0
c test whether the required storage space exceeds the available one.
if(n.ge.nest) go to 620
c start computing the least-squares closed curve with one
c interior knot.
nplus = 1
n = nmin+1
mm = (m+1)/2
t(k2) = u(mm)
nrdata(1) = mm-2
nrdata(2) = m1-mm
c main loop for the different sets of knots. m is a save upper
c bound for the number of trials.
50 do 340 iter=1,m
c find nrint, the number of knot intervals.
nrint = n-nmin+1
c find the position of the additional knots which are needed for
c the b-spline representation of s(u). if we take
c t(k+1) = u(1), t(n-k) = u(m)
c t(k+1-j) = t(n-k-j) - per, j=1,2,...k
c t(n-k+j) = t(k+1+j) + per, j=1,2,...k
c then s(u) will be a smooth closed curve if the b-spline
c coefficients satisfy the following conditions
c c((i-1)*n+n7+j) = c((i-1)*n+j), j=1,...k,i=1,2,...,idim (**)
c with n7=n-2*k-1.
t(k1) = u(1)
nk1 = n-k1
nk2 = nk1+1
t(nk2) = u(m)
do 60 j=1,k
i1 = nk2+j
i2 = nk2-j
j1 = k1+j
j2 = k1-j
t(i1) = t(j1)+per
t(j2) = t(i2)-per
60 continue
c compute the b-spline coefficients of the least-squares closed curve
c sinf(u). the observation matrix a is built up row by row while
c taking into account condition (**) and is reduced to triangular
c form by givens transformations .
c at the same time fp=f(p=inf) is computed.
c the n7 x n7 triangularised upper matrix a has the form
c ! a1 ' !
c a = ! ' a2 !
c ! 0 ' !
c with a2 a n7 x k matrix and a1 a n10 x n10 upper triangular
c matrix of bandwith k+1 ( n10 = n7-k).
c initialization.
do 65 i=1,nc
z(i) = 0.
65 continue
do 70 i=1,nk1
do 70 j=1,kk1
a1(i,j) = 0.
70 continue
n7 = nk1-k
n10 = n7-kk
jper = 0
fp = 0.
l = k1
jj = 0
do 290 it=1,m1
c fetch the current data point u(it),x(it)
ui = u(it)
wi = w(it)
do 75 j=1,idim
jj = jj+1
xi(j) = x(jj)*wi
75 continue
c search for knot interval t(l) <= ui < t(l+1).
80 if(ui.lt.t(l+1)) go to 85
l = l+1
go to 80
c evaluate the (k+1) non-zero b-splines at ui and store them in q.
85 call fpbspl(t,n,k,ui,l,h)
do 90 i=1,k1
q(it,i) = h(i)
h(i) = h(i)*wi
90 continue
l5 = l-k1
c test whether the b-splines nj,k+1(u),j=1+n7,...nk1 are all zero at ui
if(l5.lt.n10) go to 285
if(jper.ne.0) go to 160
c initialize the matrix a2.
do 95 i=1,n7
do 95 j=1,kk
a2(i,j) = 0.
95 continue
jk = n10+1
do 110 i=1,kk
ik = jk
do 100 j=1,kk1
if(ik.le.0) go to 105
a2(ik,i) = a1(ik,j)
ik = ik-1
100 continue
105 jk = jk+1
110 continue
jper = 1
c if one of the b-splines nj,k+1(u),j=n7+1,...nk1 is not zero at ui
c we take account of condition (**) for setting up the new row
c of the observation matrix a. this row is stored in the arrays h1
c (the part with respect to a1) and h2 (the part with
c respect to a2).
160 do 170 i=1,kk
h1(i) = 0.
h2(i) = 0.
170 continue
h1(kk1) = 0.
j = l5-n10
do 210 i=1,kk1
j = j+1
l0 = j
180 l1 = l0-kk
if(l1.le.0) go to 200
if(l1.le.n10) go to 190
l0 = l1-n10
go to 180
190 h1(l1) = h(i)
go to 210
200 h2(l0) = h2(l0)+h(i)
210 continue
c rotate the new row of the observation matrix into triangle
c by givens transformations.
if(n10.le.0) go to 250
c rotation with the rows 1,2,...n10 of matrix a.
do 240 j=1,n10
piv = h1(1)
if(piv.ne.0.) go to 214
do 212 i=1,kk
h1(i) = h1(i+1)
212 continue
h1(kk1) = 0.
go to 240
c calculate the parameters of the givens transformation.
214 call fpgivs(piv,a1(j,1),cos,sin)
c transformation to the right hand side.
j1 = j
do 217 j2=1,idim
call fprota(cos,sin,xi(j2),z(j1))
j1 = j1+n
217 continue
c transformations to the left hand side with respect to a2.
do 220 i=1,kk
call fprota(cos,sin,h2(i),a2(j,i))
220 continue
if(j.eq.n10) go to 250
i2 = min0(n10-j,kk)
c transformations to the left hand side with respect to a1.
do 230 i=1,i2
i1 = i+1
call fprota(cos,sin,h1(i1),a1(j,i1))
h1(i) = h1(i1)
230 continue
h1(i1) = 0.
240 continue
c rotation with the rows n10+1,...n7 of matrix a.
250 do 270 j=1,kk
ij = n10+j
if(ij.le.0) go to 270
piv = h2(j)
if(piv.eq.0.) go to 270
c calculate the parameters of the givens transformation.
call fpgivs(piv,a2(ij,j),cos,sin)
c transformations to right hand side.
j1 = ij
do 255 j2=1,idim
call fprota(cos,sin,xi(j2),z(j1))
j1 = j1+n
255 continue
if(j.eq.kk) go to 280
j1 = j+1
c transformations to left hand side.
do 260 i=j1,kk
call fprota(cos,sin,h2(i),a2(ij,i))
260 continue
270 continue
c add contribution of this row to the sum of squares of residual
c right hand sides.
280 do 282 j2=1,idim
fp = fp+xi(j2)**2
282 continue
go to 290
c rotation of the new row of the observation matrix into
c triangle in case the b-splines nj,k+1(u),j=n7+1,...n-k-1 are all zero
c at ui.
285 j = l5
do 140 i=1,kk1
j = j+1
piv = h(i)
if(piv.eq.0.) go to 140
c calculate the parameters of the givens transformation.
call fpgivs(piv,a1(j,1),cos,sin)
c transformations to right hand side.
j1 = j
do 125 j2=1,idim
call fprota(cos,sin,xi(j2),z(j1))
j1 = j1+n
125 continue
if(i.eq.kk1) go to 150
i2 = 1
i3 = i+1
c transformations to left hand side.
do 130 i1=i3,kk1
i2 = i2+1
call fprota(cos,sin,h(i1),a1(j,i2))
130 continue
140 continue
c add contribution of this row to the sum of squares of residual
c right hand sides.
150 do 155 j2=1,idim
fp = fp+xi(j2)**2
155 continue
290 continue
fpint(n) = fp0
fpint(n-1) = fpold
nrdata(n) = nplus
c backward substitution to obtain the b-spline coefficients .
j1 = 1
do 292 j2=1,idim
call fpbacp(a1,a2,z(j1),n7,kk,c(j1),kk1,nest)
j1 = j1+n
292 continue
c calculate from condition (**) the remaining coefficients.
do 297 i=1,k
j1 = i
do 295 j=1,idim
j2 = j1+n7
c(j2) = c(j1)
j1 = j1+n
295 continue
297 continue
if(iopt.lt.0) go to 660
c test whether the approximation sinf(u) is an acceptable solution.
fpms = fp-s
if(abs(fpms).lt.acc) go to 660
c if f(p=inf) < s accept the choice of knots.
if(fpms.lt.0.) go to 350
c if n=nmax, sinf(u) is an interpolating curve.
if(n.eq.nmax) go to 630
c increase the number of knots.
c if n=nest we cannot increase the number of knots because of the
c storage capacity limitation.
if(n.eq.nest) go to 620
c determine the number of knots nplus we are going to add.
npl1 = nplus*2
rn = nplus
if(fpold-fp.gt.acc) npl1 = rn*fpms/(fpold-fp)
nplus = min0(nplus*2,max0(npl1,nplus/2,1))
fpold = fp
c compute the sum of squared residuals for each knot interval
c t(j+k) <= ui <= t(j+k+1) and store it in fpint(j),j=1,2,...nrint.
fpart = 0.
i = 1
l = k1
jj = 0
do 320 it=1,m1
if(u(it).lt.t(l)) go to 300
new = 1
l = l+1
300 term = 0.
l0 = l-k2
do 310 j2=1,idim
fac = 0.
j1 = l0
do 305 j=1,k1
j1 = j1+1
fac = fac+c(j1)*q(it,j)
305 continue
jj = jj+1
term = term+(w(it)*(fac-x(jj)))**2
l0 = l0+n
310 continue
fpart = fpart+term
if(new.eq.0) go to 320
if(l.gt.k2) go to 315
fpint(nrint) = term
new = 0
go to 320
315 store = term*half
fpint(i) = fpart-store
i = i+1
fpart = store
new = 0
320 continue
fpint(nrint) = fpint(nrint)+fpart
do 330 l=1,nplus
c add a new knot
call fpknot(u,m,t,n,fpint,nrdata,nrint,nest,1)
c if n=nmax we locate the knots as for interpolation
if(n.eq.nmax) go to 5
c test whether we cannot further increase the number of knots.
if(n.eq.nest) go to 340
330 continue
c restart the computations with the new set of knots.
340 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing closed curve sp(u). c
c ********************************************************** c
c we have determined the number of knots and their position. c
c we now compute the b-spline coefficients of the smoothing curve c
c sp(u). the observation matrix a is extended by the rows of matrix c
c b expressing that the kth derivative discontinuities of sp(u) at c
c the interior knots t(k+2),...t(n-k-1) must be zero. the corres- c
c ponding weights of these additional rows are set to 1/p. c
c iteratively we then have to determine the value of p such that f(p),c
c the sum of squared residuals be = s. we already know that the least-c
c squares polynomial curve corresponds to p=0, and that the least- c
c squares periodic spline curve corresponds to p=infinity. the c
c iteration process which is proposed here, makes use of rational c
c interpolation. since f(p) is a convex and strictly decreasing c
c function of p, it can be approximated by a rational function c
c r(p) = (u*p+v)/(p+w). three values of p(p1,p2,p3) with correspond- c
c ing values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used c
c to calculate the new value of p such that r(p)=s. convergence is c
c guaranteed by taking f1>0 and f3<0. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c evaluate the discontinuity jump of the kth derivative of the
c b-splines at the knots t(l),l=k+2,...n-k-1 and store in b.
350 call fpdisc(t,n,k2,b,nest)
c initial value for p.
p1 = 0.
f1 = fp0-s
p3 = -one
f3 = fpms
n11 = n10-1
n8 = n7-1
p = 0.
l = n7
do 352 i=1,k
j = k+1-i
p = p+a2(l,j)
l = l-1
if(l.eq.0) go to 356
352 continue
do 354 i=1,n10
p = p+a1(i,1)
354 continue
356 rn = n7
p = rn/p
ich1 = 0
ich3 = 0
c iteration process to find the root of f(p) = s.
do 595 iter=1,maxit
c form the matrix g as the matrix a extended by the rows of matrix b.
c the rows of matrix b with weight 1/p are rotated into
c the triangularised observation matrix a.
c after triangularisation our n7 x n7 matrix g takes the form
c ! g1 ' !
c g = ! ' g2 !
c ! 0 ' !
c with g2 a n7 x (k+1) matrix and g1 a n11 x n11 upper triangular
c matrix of bandwidth k+2. ( n11 = n7-k-1)
pinv = one/p
c store matrix a into g
do 358 i=1,nc
c(i) = z(i)
358 continue
do 360 i=1,n7
g1(i,k1) = a1(i,k1)
g1(i,k2) = 0.
g2(i,1) = 0.
do 360 j=1,k
g1(i,j) = a1(i,j)
g2(i,j+1) = a2(i,j)
360 continue
l = n10
do 370 j=1,k1
if(l.le.0) go to 375
g2(l,1) = a1(l,j)
l = l-1
370 continue
375 do 540 it=1,n8
c fetch a new row of matrix b and store it in the arrays h1 (the part
c with respect to g1) and h2 (the part with respect to g2).
do 380 j=1,idim
xi(j) = 0.
380 continue
do 385 i=1,k1
h1(i) = 0.
h2(i) = 0.
385 continue
h1(k2) = 0.
if(it.gt.n11) go to 420
l = it
l0 = it
do 390 j=1,k2
if(l0.eq.n10) go to 400
h1(j) = b(it,j)*pinv
l0 = l0+1
390 continue
go to 470
400 l0 = 1
do 410 l1=j,k2
h2(l0) = b(it,l1)*pinv
l0 = l0+1
410 continue
go to 470
420 l = 1
i = it-n10
do 460 j=1,k2
i = i+1
l0 = i
430 l1 = l0-k1
if(l1.le.0) go to 450
if(l1.le.n11) go to 440
l0 = l1-n11
go to 430
440 h1(l1) = b(it,j)*pinv
go to 460
450 h2(l0) = h2(l0)+b(it,j)*pinv
460 continue
if(n11.le.0) go to 510
c rotate this row into triangle by givens transformations
c rotation with the rows l,l+1,...n11.
470 do 500 j=l,n11
piv = h1(1)
c calculate the parameters of the givens transformation.
call fpgivs(piv,g1(j,1),cos,sin)
c transformation to right hand side.
j1 = j
do 475 j2=1,idim
call fprota(cos,sin,xi(j2),c(j1))
j1 = j1+n
475 continue
c transformation to the left hand side with respect to g2.
do 480 i=1,k1
call fprota(cos,sin,h2(i),g2(j,i))
480 continue
if(j.eq.n11) go to 510
i2 = min0(n11-j,k1)
c transformation to the left hand side with respect to g1.
do 490 i=1,i2
i1 = i+1
call fprota(cos,sin,h1(i1),g1(j,i1))
h1(i) = h1(i1)
490 continue
h1(i1) = 0.
500 continue
c rotation with the rows n11+1,...n7
510 do 530 j=1,k1
ij = n11+j
if(ij.le.0) go to 530
piv = h2(j)
c calculate the parameters of the givens transformation
call fpgivs(piv,g2(ij,j),cos,sin)
c transformation to the right hand side.
j1 = ij
do 515 j2=1,idim
call fprota(cos,sin,xi(j2),c(j1))
j1 = j1+n
515 continue
if(j.eq.k1) go to 540
j1 = j+1
c transformation to the left hand side.
do 520 i=j1,k1
call fprota(cos,sin,h2(i),g2(ij,i))
520 continue
530 continue
540 continue
c backward substitution to obtain the b-spline coefficients
j1 = 1
do 542 j2=1,idim
call fpbacp(g1,g2,c(j1),n7,k1,c(j1),k2,nest)
j1 = j1+n
542 continue
c calculate from condition (**) the remaining b-spline coefficients.
do 547 i=1,k
j1 = i
do 545 j=1,idim
j2 = j1+n7
c(j2) = c(j1)
j1 = j1+n
545 continue
547 continue
c computation of f(p).
fp = 0.
l = k1
jj = 0
do 570 it=1,m1
if(u(it).lt.t(l)) go to 550
l = l+1
550 l0 = l-k2
term = 0.
do 565 j2=1,idim
fac = 0.
j1 = l0
do 560 j=1,k1
j1 = j1+1
fac = fac+c(j1)*q(it,j)
560 continue
jj = jj+1
term = term+(fac-x(jj))**2
l0 = l0+n
565 continue
fp = fp+term*w(it)**2
570 continue
c test whether the approximation sp(u) is an acceptable solution.
fpms = fp-s
if(abs(fpms).lt.acc) go to 660
c test whether the maximal number of iterations is reached.
if(iter.eq.maxit) go to 600
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 580
if((f2-f3) .gt. acc) go to 575
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 +p2*con1
go to 595
575 if(f2.lt.0.) ich3 = 1
580 if(ich1.ne.0) go to 590
if((f1-f2) .gt. acc) go to 585
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 595
if(p.ge.p3) p = p2*con1 +p3*con9
go to 595
585 if(f2.gt.0.) ich1 = 1
c test whether the iteration process proceeds as theoretically
c expected.
590 if(f2.ge.f1 .or. f2.le.f3) go to 610
c find the new value for p.
p = fprati(p1,f1,p2,f2,p3,f3)
595 continue
c error codes and messages.
600 ier = 3
go to 660
610 ier = 2
go to 660
620 ier = 1
go to 660
630 ier = -1
go to 660
640 ier = -2
c the point (z(1),z(2),...,z(idim)) is a solution of our problem.
c a constant function is a spline of degree k with all b-spline
c coefficients equal to that constant.
do 650 i=1,k1
rn = k1-i
t(i) = u(1)-rn*per
j = i+k1
rn = i-1
t(j) = u(m)+rn*per
650 continue
n = nmin
j1 = 0
do 658 j=1,idim
fac = z(j)
j2 = j1
do 654 i=1,k1
j2 = j2+1
c(j2) = fac
654 continue
j1 = j1+n
658 continue
fp = fp0
fpint(n) = fp0
fpint(n-1) = 0.
nrdata(n) = 0
660 return
end
|