1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
subroutine fpcsin(a,b,par,sia,coa,sib,cob,ress,resc)
c fpcsin calculates the integrals ress=integral((b-x)**3*sin(par*x))
c and resc=integral((b-x)**3*cos(par*x)) over the interval (a,b),
c given sia=sin(par*a),coa=cos(par*a),sib=sin(par*b) and cob=cos(par*b)
c ..
c ..scalar arguments..
real*8 a,b,par,sia,coa,sib,cob,ress,resc
c ..local scalars..
integer i,j
real*8 ab,ab4,ai,alfa,beta,b2,b4,eps,fac,f1,f2,one,quart,six,
* three,two
c ..function references..
real*8 abs
c ..
one = 0.1e+01
two = 0.2e+01
three = 0.3e+01
six = 0.6e+01
quart = 0.25e+0
eps = 0.1e-09
ab = b-a
ab4 = ab**4
alfa = ab*par
c the way of calculating the integrals ress and resc depends on
c the value of alfa = (b-a)*par.
if(abs(alfa).le.one) go to 100
c integration by parts.
beta = one/alfa
b2 = beta**2
b4 = six*b2**2
f1 = three*b2*(one-two*b2)
f2 = beta*(one-six*b2)
ress = ab4*(coa*f2+sia*f1+sib*b4)
resc = ab4*(coa*f1-sia*f2+cob*b4)
go to 400
c ress and resc are found by evaluating a series expansion.
100 fac = quart
f1 = fac
f2 = 0.
i = 4
do 200 j=1,5
i = i+1
ai = i
fac = fac*alfa/ai
f2 = f2+fac
if(abs(fac).le.eps) go to 300
i = i+1
ai = i
fac = -fac*alfa/ai
f1 = f1+fac
if(abs(fac).le.eps) go to 300
200 continue
300 ress = ab4*(coa*f2+sia*f1)
resc = ab4*(coa*f1-sia*f2)
400 return
end
|