1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
subroutine fpgrdi(ifsu,ifsv,ifbu,ifbv,iback,u,mu,v,mv,z,mz,dz,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu,spu,spv,
* right,q,au,av1,av2,bu,bv,aa,bb,cc,cosi,nru,nrv)
c ..
c ..scalar arguments..
real*8 p,sq,fp
integer ifsu,ifsv,ifbu,ifbv,iback,mu,mv,mz,iop0,iop1,nu,nv,nc,
* mm,mvnu
c ..array arguments..
real*8 u(mu),v(mv),z(mz),dz(3),tu(nu),tv(nv),c(nc),fpu(nu),fpv(nv)
*,
* spu(mu,4),spv(mv,4),right(mm),q(mvnu),au(nu,5),av1(nv,6),
* av2(nv,4),aa(2,mv),bb(2,nv),cc(nv),cosi(2,nv),bu(nu,5),bv(nv,5)
integer nru(mu),nrv(mv)
c ..local scalars..
real*8 arg,co,dz1,dz2,dz3,fac,fac0,pinv,piv,si,term,one,three,half
*
integer i,ic,ii,ij,ik,iq,irot,it,iz,i0,i1,i2,i3,j,jj,jk,jper,
* j0,j1,k,k1,k2,l,l0,l1,l2,mvv,ncof,nrold,nroldu,nroldv,number,
* numu,numu1,numv,numv1,nuu,nu4,nu7,nu8,nu9,nv11,nv4,nv7,nv8,n1
c ..local arrays..
real*8 h(5),h1(5),h2(4)
c ..function references..
integer min0
real*8 cos,sin
c ..subroutine references..
c fpback,fpbspl,fpgivs,fpcyt1,fpcyt2,fpdisc,fpbacp,fprota
c ..
c let
c | (spu) | | (spv) |
c (au) = | ---------- | (av) = | ---------- |
c | (1/p) (bu) | | (1/p) (bv) |
c
c | z ' 0 |
c q = | ------ |
c | 0 ' 0 |
c
c with c : the (nu-4) x (nv-4) matrix which contains the b-spline
c coefficients.
c z : the mu x mv matrix which contains the function values.
c spu,spv: the mu x (nu-4), resp. mv x (nv-4) observation matrices
c according to the least-squares problems in the u-,resp.
c v-direction.
c bu,bv : the (nu-7) x (nu-4),resp. (nv-7) x (nv-4) matrices
c containing the discontinuity jumps of the derivatives
c of the b-splines in the u-,resp.v-variable at the knots
c the b-spline coefficients of the smoothing spline are then calculated
c as the least-squares solution of the following over-determined linear
c system of equations
c
c (1) (av) c (au)' = q
c
c subject to the constraints
c
c (2) c(i,nv-3+j) = c(i,j), j=1,2,3 ; i=1,2,...,nu-4
c
c (3) if iop0 = 0 c(1,j) = dz(1)
c iop0 = 1 c(1,j) = dz(1)
c c(2,j) = dz(1)+(dz(2)*cosi(1,j)+dz(3)*cosi(2,j))*
c tu(5)/3. = cc(j) , j=1,2,...nv-4
c
c (4) if iop1 = 1 c(nu-4,j) = 0, j=1,2,...,nv-4.
c
c set constants
one = 1
three = 3
half = 0.5
c initialization
nu4 = nu-4
nu7 = nu-7
nu8 = nu-8
nu9 = nu-9
nv4 = nv-4
nv7 = nv-7
nv8 = nv-8
nv11 = nv-11
nuu = nu4-iop0-iop1-1
if(p.gt.0.) pinv = one/p
c it depends on the value of the flags ifsu,ifsv,ifbu,ifbv and iop0 and
c on the value of p whether the matrices (spu), (spv), (bu), (bv) and
c (cosi) still must be determined.
if(ifsu.ne.0) go to 30
c calculate the non-zero elements of the matrix (spu) which is the ob-
c servation matrix according to the least-squares spline approximation
c problem in the u-direction.
l = 4
l1 = 5
number = 0
do 25 it=1,mu
arg = u(it)
10 if(arg.lt.tu(l1) .or. l.eq.nu4) go to 15
l = l1
l1 = l+1
number = number+1
go to 10
15 call fpbspl(tu,nu,3,arg,l,h)
do 20 i=1,4
spu(it,i) = h(i)
20 continue
nru(it) = number
25 continue
ifsu = 1
c calculate the non-zero elements of the matrix (spv) which is the ob-
c servation matrix according to the least-squares spline approximation
c problem in the v-direction.
30 if(ifsv.ne.0) go to 85
l = 4
l1 = 5
number = 0
do 50 it=1,mv
arg = v(it)
35 if(arg.lt.tv(l1) .or. l.eq.nv4) go to 40
l = l1
l1 = l+1
number = number+1
go to 35
40 call fpbspl(tv,nv,3,arg,l,h)
do 45 i=1,4
spv(it,i) = h(i)
45 continue
nrv(it) = number
50 continue
ifsv = 1
if(iop0.eq.0) go to 85
c calculate the coefficients of the interpolating splines for cos(v)
c and sin(v).
do 55 i=1,nv4
cosi(1,i) = 0.
cosi(2,i) = 0.
55 continue
if(nv7.lt.4) go to 85
do 65 i=1,nv7
l = i+3
arg = tv(l)
call fpbspl(tv,nv,3,arg,l,h)
do 60 j=1,3
av1(i,j) = h(j)
60 continue
cosi(1,i) = cos(arg)
cosi(2,i) = sin(arg)
65 continue
call fpcyt1(av1,nv7,nv)
do 80 j=1,2
do 70 i=1,nv7
right(i) = cosi(j,i)
70 continue
call fpcyt2(av1,nv7,right,right,nv)
do 75 i=1,nv7
cosi(j,i+1) = right(i)
75 continue
cosi(j,1) = cosi(j,nv7+1)
cosi(j,nv7+2) = cosi(j,2)
cosi(j,nv4) = cosi(j,3)
80 continue
85 if(p.le.0.) go to 150
c calculate the non-zero elements of the matrix (bu).
if(ifbu.ne.0 .or. nu8.eq.0) go to 90
call fpdisc(tu,nu,5,bu,nu)
ifbu = 1
c calculate the non-zero elements of the matrix (bv).
90 if(ifbv.ne.0 .or. nv8.eq.0) go to 150
call fpdisc(tv,nv,5,bv,nv)
ifbv = 1
c substituting (2),(3) and (4) into (1), we obtain the overdetermined
c system
c (5) (avv) (cr) (auu)' = (qq)
c from which the nuu*nv7 remaining coefficients
c c(i,j) , i=2+iop0,3+iop0,...,nu-4-iop1 ; j=1,2,...,nv-7 ,
c the elements of (cr), are then determined in the least-squares sense.
c simultaneously, we compute the resulting sum of squared residuals sq.
150 dz1 = dz(1)
do 155 i=1,mv
aa(1,i) = dz1
155 continue
if(nv8.eq.0 .or. p.le.0.) go to 165
do 160 i=1,nv8
bb(1,i) = 0.
160 continue
165 mvv = mv
if(iop0.eq.0) go to 220
fac = tu(5)/three
dz2 = dz(2)*fac
dz3 = dz(3)*fac
do 170 i=1,nv4
cc(i) = dz1+dz2*cosi(1,i)+dz3*cosi(2,i)
170 continue
do 190 i=1,mv
number = nrv(i)
fac = 0.
do 180 j=1,4
number = number+1
fac = fac+cc(number)*spv(i,j)
180 continue
aa(2,i) = fac
190 continue
if(nv8.eq.0 .or. p.le.0.) go to 220
do 210 i=1,nv8
number = i
fac = 0.
do 200 j=1,5
fac = fac+cc(number)*bv(i,j)
number = number+1
200 continue
bb(2,i) = fac*pinv
210 continue
mvv = mvv+nv8
c we first determine the matrices (auu) and (qq). then we reduce the
c matrix (auu) to upper triangular form (ru) using givens rotations.
c we apply the same transformations to the rows of matrix qq to obtain
c the (mv+nv8) x nuu matrix g.
c we store matrix (ru) into au and g into q.
220 l = mvv*nuu
c initialization.
sq = 0.
do 230 i=1,l
q(i) = 0.
230 continue
do 240 i=1,nuu
do 240 j=1,5
au(i,j) = 0.
240 continue
l = 0
nrold = 0
n1 = nrold+1
do 420 it=1,mu
number = nru(it)
c find the appropriate column of q.
250 do 260 j=1,mvv
right(j) = 0.
260 continue
if(nrold.eq.number) go to 280
if(p.le.0.) go to 410
c fetch a new row of matrix (bu).
do 270 j=1,5
h(j) = bu(n1,j)*pinv
270 continue
i0 = 1
i1 = 5
go to 310
c fetch a new row of matrix (spu).
280 do 290 j=1,4
h(j) = spu(it,j)
290 continue
c find the appropriate column of q.
do 300 j=1,mv
l = l+1
right(j) = z(l)
300 continue
i0 = 1
i1 = 4
310 if(nu7-number .eq. iop1) i1 = i1-1
j0 = n1
c take into account that we eliminate the constraints (3)
320 if(j0-1.gt.iop0) go to 360
fac0 = h(i0)
do 330 j=1,mv
right(j) = right(j)-fac0*aa(j0,j)
330 continue
if(mv.eq.mvv) go to 350
j = mv
do 340 jj=1,nv8
j = j+1
right(j) = right(j)-fac0*bb(j0,jj)
340 continue
350 j0 = j0+1
i0 = i0+1
go to 320
360 irot = nrold-iop0-1
if(irot.lt.0) irot = 0
c rotate the new row of matrix (auu) into triangle.
do 390 i=i0,i1
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 390
c calculate the parameters of the givens transformation.
call fpgivs(piv,au(irot,1),co,si)
c apply that transformation to the rows of matrix (qq).
iq = (irot-1)*mvv
do 370 j=1,mvv
iq = iq+1
call fprota(co,si,right(j),q(iq))
370 continue
c apply that transformation to the columns of (auu).
if(i.eq.i1) go to 390
i2 = 1
i3 = i+1
do 380 j=i3,i1
i2 = i2+1
call fprota(co,si,h(j),au(irot,i2))
380 continue
390 continue
c we update the sum of squared residuals
do 395 j=1,mvv
sq = sq+right(j)**2
395 continue
if(nrold.eq.number) go to 420
410 nrold = n1
n1 = n1+1
go to 250
420 continue
c we determine the matrix (avv) and then we reduce her to
c upper triangular form (rv) using givens rotations.
c we apply the same transformations to the columns of matrix
c g to obtain the (nv-7) x (nu-5-iop0-iop1) matrix h.
c we store matrix (rv) into av1 and av2, h into c.
c the nv7 x nv7 upper triangular matrix (rv) has the form
c | av1 ' |
c (rv) = | ' av2 |
c | 0 ' |
c with (av2) a nv7 x 4 matrix and (av1) a nv11 x nv11 upper
c triangular matrix of bandwidth 5.
ncof = nuu*nv7
c initialization.
do 430 i=1,ncof
c(i) = 0.
430 continue
do 440 i=1,nv4
av1(i,5) = 0.
do 440 j=1,4
av1(i,j) = 0.
av2(i,j) = 0.
440 continue
jper = 0
nrold = 0
do 770 it=1,mv
number = nrv(it)
450 if(nrold.eq.number) go to 480
if(p.le.0.) go to 760
c fetch a new row of matrix (bv).
n1 = nrold+1
do 460 j=1,5
h(j) = bv(n1,j)*pinv
460 continue
c find the appropiate row of g.
do 465 j=1,nuu
right(j) = 0.
465 continue
if(mv.eq.mvv) go to 510
l = mv+n1
do 470 j=1,nuu
right(j) = q(l)
l = l+mvv
470 continue
go to 510
c fetch a new row of matrix (spv)
480 h(5) = 0.
do 490 j=1,4
h(j) = spv(it,j)
490 continue
c find the appropiate row of g.
l = it
do 500 j=1,nuu
right(j) = q(l)
l = l+mvv
500 continue
c test whether there are non-zero values in the new row of (avv)
c corresponding to the b-splines n(j,v),j=nv7+1,...,nv4.
510 if(nrold.lt.nv11) go to 710
if(jper.ne.0) go to 550
c initialize the matrix (av2).
jk = nv11+1
do 540 i=1,4
ik = jk
do 520 j=1,5
if(ik.le.0) go to 530
av2(ik,i) = av1(ik,j)
ik = ik-1
520 continue
530 jk = jk+1
540 continue
jper = 1
c if one of the non-zero elements of the new row corresponds to one of
c the b-splines n(j;v),j=nv7+1,...,nv4, we take account of condition
c (2) for setting up this row of (avv). the row is stored in h1( the
c part with respect to av1) and h2 (the part with respect to av2).
550 do 560 i=1,4
h1(i) = 0.
h2(i) = 0.
560 continue
h1(5) = 0.
j = nrold-nv11
do 600 i=1,5
j = j+1
l0 = j
570 l1 = l0-4
if(l1.le.0) go to 590
if(l1.le.nv11) go to 580
l0 = l1-nv11
go to 570
580 h1(l1) = h(i)
go to 600
590 h2(l0) = h2(l0) + h(i)
600 continue
c rotate the new row of (avv) into triangle.
if(nv11.le.0) go to 670
c rotations with the rows 1,2,...,nv11 of (avv).
do 660 j=1,nv11
piv = h1(1)
i2 = min0(nv11-j,4)
if(piv.eq.0.) go to 640
c calculate the parameters of the givens transformation.
call fpgivs(piv,av1(j,1),co,si)
c apply that transformation to the columns of matrix g.
ic = j
do 610 i=1,nuu
call fprota(co,si,right(i),c(ic))
ic = ic+nv7
610 continue
c apply that transformation to the rows of (avv) with respect to av2.
do 620 i=1,4
call fprota(co,si,h2(i),av2(j,i))
620 continue
c apply that transformation to the rows of (avv) with respect to av1.
if(i2.eq.0) go to 670
do 630 i=1,i2
i1 = i+1
call fprota(co,si,h1(i1),av1(j,i1))
630 continue
640 do 650 i=1,i2
h1(i) = h1(i+1)
650 continue
h1(i2+1) = 0.
660 continue
c rotations with the rows nv11+1,...,nv7 of avv.
670 do 700 j=1,4
ij = nv11+j
if(ij.le.0) go to 700
piv = h2(j)
if(piv.eq.0.) go to 700
c calculate the parameters of the givens transformation.
call fpgivs(piv,av2(ij,j),co,si)
c apply that transformation to the columns of matrix g.
ic = ij
do 680 i=1,nuu
call fprota(co,si,right(i),c(ic))
ic = ic+nv7
680 continue
if(j.eq.4) go to 700
c apply that transformation to the rows of (avv) with respect to av2.
j1 = j+1
do 690 i=j1,4
call fprota(co,si,h2(i),av2(ij,i))
690 continue
700 continue
c we update the sum of squared residuals
do 705 i=1,nuu
sq = sq+right(i)**2
705 continue
go to 750
c rotation into triangle of the new row of (avv), in case the elements
c corresponding to the b-splines n(j;v),j=nv7+1,...,nv4 are all zero.
710 irot =nrold
do 740 i=1,5
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 740
c calculate the parameters of the givens transformation.
call fpgivs(piv,av1(irot,1),co,si)
c apply that transformation to the columns of matrix g.
ic = irot
do 720 j=1,nuu
call fprota(co,si,right(j),c(ic))
ic = ic+nv7
720 continue
c apply that transformation to the rows of (avv).
if(i.eq.5) go to 740
i2 = 1
i3 = i+1
do 730 j=i3,5
i2 = i2+1
call fprota(co,si,h(j),av1(irot,i2))
730 continue
740 continue
c we update the sum of squared residuals
do 745 i=1,nuu
sq = sq+right(i)**2
745 continue
750 if(nrold.eq.number) go to 770
760 nrold = nrold+1
go to 450
770 continue
c test whether the b-spline coefficients must be determined.
if(iback.ne.0) return
c backward substitution to obtain the b-spline coefficients as the
c solution of the linear system (rv) (cr) (ru)' = h.
c first step: solve the system (rv) (c1) = h.
k = 1
do 780 i=1,nuu
call fpbacp(av1,av2,c(k),nv7,4,c(k),5,nv)
k = k+nv7
780 continue
c second step: solve the system (cr) (ru)' = (c1).
k = 0
do 800 j=1,nv7
k = k+1
l = k
do 790 i=1,nuu
right(i) = c(l)
l = l+nv7
790 continue
call fpback(au,right,nuu,5,right,nu)
l = k
do 795 i=1,nuu
c(l) = right(i)
l = l+nv7
795 continue
800 continue
c calculate from the conditions (2)-(3)-(4), the remaining b-spline
c coefficients.
ncof = nu4*nv4
i = nv4
j = 0
do 805 l=1,nv4
q(l) = dz1
805 continue
if(iop0.eq.0) go to 815
do 810 l=1,nv4
i = i+1
q(i) = cc(l)
810 continue
815 if(nuu.eq.0) go to 850
do 840 l=1,nuu
ii = i
do 820 k=1,nv7
i = i+1
j = j+1
q(i) = c(j)
820 continue
do 830 k=1,3
ii = ii+1
i = i+1
q(i) = q(ii)
830 continue
840 continue
850 if(iop1.eq.0) go to 870
do 860 l=1,nv4
i = i+1
q(i) = 0.
860 continue
870 do 880 i=1,ncof
c(i) = q(i)
880 continue
c calculate the quantities
c res(i,j) = (z(i,j) - s(u(i),v(j)))**2 , i=1,2,..,mu;j=1,2,..,mv
c fp = sumi=1,mu(sumj=1,mv(res(i,j)))
c fpu(r) = sum''i(sumj=1,mv(res(i,j))) , r=1,2,...,nu-7
c tu(r+3) <= u(i) <= tu(r+4)
c fpv(r) = sumi=1,mu(sum''j(res(i,j))) , r=1,2,...,nv-7
c tv(r+3) <= v(j) <= tv(r+4)
fp = 0.
do 890 i=1,nu
fpu(i) = 0.
890 continue
do 900 i=1,nv
fpv(i) = 0.
900 continue
iz = 0
nroldu = 0
c main loop for the different grid points.
do 950 i1=1,mu
numu = nru(i1)
numu1 = numu+1
nroldv = 0
do 940 i2=1,mv
numv = nrv(i2)
numv1 = numv+1
iz = iz+1
c evaluate s(u,v) at the current grid point by making the sum of the
c cross products of the non-zero b-splines at (u,v), multiplied with
c the appropiate b-spline coefficients.
term = 0.
k1 = numu*nv4+numv
do 920 l1=1,4
k2 = k1
fac = spu(i1,l1)
do 910 l2=1,4
k2 = k2+1
term = term+fac*spv(i2,l2)*c(k2)
910 continue
k1 = k1+nv4
920 continue
c calculate the squared residual at the current grid point.
term = (z(iz)-term)**2
c adjust the different parameters.
fp = fp+term
fpu(numu1) = fpu(numu1)+term
fpv(numv1) = fpv(numv1)+term
fac = term*half
if(numv.eq.nroldv) go to 930
fpv(numv1) = fpv(numv1)-fac
fpv(numv) = fpv(numv)+fac
930 nroldv = numv
if(numu.eq.nroldu) go to 940
fpu(numu1) = fpu(numu1)-fac
fpu(numu) = fpu(numu)+fac
940 continue
nroldu = numu
950 continue
return
end
|