File: fpgrpa.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (313 lines) | stat: -rw-r--r-- 9,593 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
      subroutine fpgrpa(ifsu,ifsv,ifbu,ifbv,idim,ipar,u,mu,v,mv,z,mz,
     * tu,nu,tv,nv,p,c,nc,fp,fpu,fpv,mm,mvnu,spu,spv,right,q,au,au1,
     * av,av1,bu,bv,nru,nrv)
c  ..
c  ..scalar arguments..
      real*8 p,fp
      integer ifsu,ifsv,ifbu,ifbv,idim,mu,mv,mz,nu,nv,nc,mm,mvnu
c  ..array arguments..
      real*8 u(mu),v(mv),z(mz*idim),tu(nu),tv(nv),c(nc*idim),fpu(nu),
     * fpv(nv),spu(mu,4),spv(mv,4),right(mm*idim),q(mvnu),au(nu,5),
     * au1(nu,4),av(nv,5),av1(nv,4),bu(nu,5),bv(nv,5)
      integer ipar(2),nru(mu),nrv(mv)
c  ..local scalars..
      real*8 arg,fac,term,one,half,value
      integer i,id,ii,it,iz,i1,i2,j,jz,k,k1,k2,l,l1,l2,mvv,k0,muu,
     * ncof,nroldu,nroldv,number,nmd,numu,numu1,numv,numv1,nuu,nvv,
     * nu4,nu7,nu8,nv4,nv7,nv8
c  ..local arrays..
      real*8 h(5)
c  ..subroutine references..
c    fpback,fpbspl,fpdisc,fpbacp,fptrnp,fptrpe
c  ..
c  let
c               |   (spu)    |            |   (spv)    |
c        (au) = | ---------- |     (av) = | ---------- |
c               | (1/p) (bu) |            | (1/p) (bv) |
c
c                                | z  ' 0 |
c                            q = | ------ |
c                                | 0  ' 0 |
c
c  with c      : the (nu-4) x (nv-4) matrix which contains the b-spline
c                coefficients.
c       z      : the mu x mv matrix which contains the function values.
c       spu,spv: the mu x (nu-4), resp. mv x (nv-4) observation matrices
c                according to the least-squares problems in the u-,resp.
c                v-direction.
c       bu,bv  : the (nu-7) x (nu-4),resp. (nv-7) x (nv-4) matrices
c                containing the discontinuity jumps of the derivatives
c                of the b-splines in the u-,resp.v-variable at the knots
c  the b-spline coefficients of the smoothing spline are then calculated
c  as the least-squares solution of the following over-determined linear
c  system of equations
c
c    (1)  (av) c (au)' = q
c
c  subject to the constraints
c
c    (2)  c(nu-3+i,j) = c(i,j), i=1,2,3 ; j=1,2,...,nv-4
c            if(ipar(1).ne.0)
c
c    (3)  c(i,nv-3+j) = c(i,j), j=1,2,3 ; i=1,2,...,nu-4
c            if(ipar(2).ne.0)
c
c  set constants
      one = 1
      half = 0.5
c  initialization
      nu4 = nu-4
      nu7 = nu-7
      nu8 = nu-8
      nv4 = nv-4
      nv7 = nv-7
      nv8 = nv-8
      muu = mu
      if(ipar(1).ne.0) muu = mu-1
      mvv = mv
      if(ipar(2).ne.0) mvv = mv-1
c  it depends on the value of the flags ifsu,ifsv,ifbu  and ibvand
c  on the value of p whether the matrices (spu), (spv), (bu) and (bv)
c  still must be determined.
      if(ifsu.ne.0) go to 50
c  calculate the non-zero elements of the matrix (spu) which is the ob-
c  servation matrix according to the least-squares spline approximation
c  problem in the u-direction.
      l = 4
      l1 = 5
      number = 0
      do 40 it=1,muu
        arg = u(it)
  10    if(arg.lt.tu(l1) .or. l.eq.nu4) go to 20
        l = l1
        l1 = l+1
        number = number+1
        go to 10
  20    call fpbspl(tu,nu,3,arg,l,h)
        do 30 i=1,4
          spu(it,i) = h(i)
  30    continue
        nru(it) = number
  40  continue
      ifsu = 1
c  calculate the non-zero elements of the matrix (spv) which is the ob-
c  servation matrix according to the least-squares spline approximation
c  problem in the v-direction.
  50  if(ifsv.ne.0) go to 100
      l = 4
      l1 = 5
      number = 0
      do 90 it=1,mvv
        arg = v(it)
  60    if(arg.lt.tv(l1) .or. l.eq.nv4) go to 70
        l = l1
        l1 = l+1
        number = number+1
        go to 60
  70    call fpbspl(tv,nv,3,arg,l,h)
        do 80 i=1,4
          spv(it,i) = h(i)
  80    continue
        nrv(it) = number
  90  continue
      ifsv = 1
 100  if(p.le.0.) go to  150
c  calculate the non-zero elements of the matrix (bu).
      if(ifbu.ne.0 .or. nu8.eq.0) go to 110
      call fpdisc(tu,nu,5,bu,nu)
      ifbu = 1
c  calculate the non-zero elements of the matrix (bv).
 110  if(ifbv.ne.0 .or. nv8.eq.0) go to 150
      call fpdisc(tv,nv,5,bv,nv)
      ifbv = 1
c  substituting (2)  and (3) into (1), we obtain the overdetermined
c  system
c         (4)  (avv) (cr) (auu)' = (qq)
c  from which the nuu*nvv remaining coefficients
c         c(i,j) , i=1,...,nu-4-3*ipar(1) ; j=1,...,nv-4-3*ipar(2) ,
c  the elements of (cr), are then determined in the least-squares sense.
c  we first determine the matrices (auu) and (qq). then we reduce the
c  matrix (auu) to upper triangular form (ru) using givens rotations.
c  we apply the same transformations to the rows of matrix qq to obtain
c  the (mv) x nuu matrix g.
c  we store matrix (ru) into au (and au1 if ipar(1)=1) and g into q.
 150  if(ipar(1).ne.0) go to 160
      nuu = nu4
      call fptrnp(mu,mv,idim,nu,nru,spu,p,bu,z,au,q,right)
      go to 180
 160  nuu = nu7
      call fptrpe(mu,mv,idim,nu,nru,spu,p,bu,z,au,au1,q,right)
c  we determine the matrix (avv) and then we reduce this matrix to
c  upper triangular form (rv) using givens rotations.
c  we apply the same transformations to the columns of matrix
c  g to obtain the (nvv) x (nuu) matrix h.
c  we store matrix (rv) into av (and av1 if ipar(2)=1) and h into c.
 180  if(ipar(2).ne.0) go to 190
      nvv = nv4
      call fptrnp(mv,nuu,idim,nv,nrv,spv,p,bv,q,av,c,right)
      go to 200
 190  nvv = nv7
      call fptrpe(mv,nuu,idim,nv,nrv,spv,p,bv,q,av,av1,c,right)
c  backward substitution to obtain the b-spline coefficients as the
c  solution of the linear system    (rv) (cr) (ru)' = h.
c  first step: solve the system  (rv) (c1) = h.
 200  ncof = nuu*nvv
      k = 1
      if(ipar(2).ne.0) go to 240
      do 220 ii=1,idim
      do 220 i=1,nuu
         call fpback(av,c(k),nvv,5,c(k),nv)
         k = k+nvv
 220  continue
      go to 300
 240  do 260 ii=1,idim
      do 260 i=1,nuu
         call fpbacp(av,av1,c(k),nvv,4,c(k),5,nv)
         k = k+nvv
 260  continue
c  second step: solve the system  (cr) (ru)' = (c1).
 300  if(ipar(1).ne.0) go to 400
      do 360 ii=1,idim
      k = (ii-1)*ncof
      do 360 j=1,nvv
        k = k+1
        l = k
        do 320 i=1,nuu
          right(i) = c(l)
          l = l+nvv
 320    continue
        call fpback(au,right,nuu,5,right,nu)
        l = k
        do 340 i=1,nuu
           c(l) = right(i)
           l = l+nvv
 340    continue
 360  continue
      go to 500
 400  do 460 ii=1,idim
      k = (ii-1)*ncof
      do 460 j=1,nvv
        k = k+1
        l = k
        do 420 i=1,nuu
          right(i) = c(l)
          l = l+nvv
 420    continue
        call fpbacp(au,au1,right,nuu,4,right,5,nu)
        l = k
        do 440 i=1,nuu
           c(l) = right(i)
           l = l+nvv
 440    continue
 460  continue
c  calculate from the conditions (2)-(3), the remaining b-spline
c  coefficients.
 500  if(ipar(2).eq.0) go to 600
      i = 0
      j = 0
      do 560 id=1,idim
      do 560 l=1,nuu
         ii = i
         do 520 k=1,nvv
            i = i+1
            j = j+1
            q(i) = c(j)
 520     continue
         do 540 k=1,3
            ii = ii+1
            i = i+1
            q(i) = q(ii)
 540     continue
 560  continue
      ncof = nv4*nuu
      nmd = ncof*idim
      do 580 i=1,nmd
         c(i) = q(i)
 580  continue
 600  if(ipar(1).eq.0) go to 700
      i = 0
      j = 0
      n33 = 3*nv4
      do 660 id=1,idim
         ii = i
         do 620 k=1,ncof
            i = i+1
            j = j+1
            q(i) = c(j)
 620     continue
         do 640 k=1,n33
            ii = ii+1
            i = i+1
            q(i) = q(ii)
 640     continue
 660  continue
      ncof = nv4*nu4
      nmd = ncof*idim
      do 680 i=1,nmd
         c(i) = q(i)
 680  continue
c  calculate the quantities
c    res(i,j) = (z(i,j) - s(u(i),v(j)))**2 , i=1,2,..,mu;j=1,2,..,mv
c    fp = sumi=1,mu(sumj=1,mv(res(i,j)))
c    fpu(r) = sum''i(sumj=1,mv(res(i,j))) , r=1,2,...,nu-7
c                  tu(r+3) <= u(i) <= tu(r+4)
c    fpv(r) = sumi=1,mu(sum''j(res(i,j))) , r=1,2,...,nv-7
c                  tv(r+3) <= v(j) <= tv(r+4)
 700  fp = 0.
      do 720 i=1,nu
        fpu(i) = 0.
 720  continue
      do 740 i=1,nv
        fpv(i) = 0.
 740  continue
      nroldu = 0
c  main loop for the different grid points.
      do 860 i1=1,muu
        numu = nru(i1)
        numu1 = numu+1
        nroldv = 0
        iz = (i1-1)*mv
        do 840 i2=1,mvv
          numv = nrv(i2)
          numv1 = numv+1
          iz = iz+1
c  evaluate s(u,v) at the current grid point by making the sum of the
c  cross products of the non-zero b-splines at (u,v), multiplied with
c  the appropiate b-spline coefficients.
          term = 0.
          k0 = numu*nv4+numv
          jz = iz
          do 800 id=1,idim
          k1 = k0
          value = 0.
          do 780 l1=1,4
            k2 = k1
            fac = spu(i1,l1)
            do 760 l2=1,4
              k2 = k2+1
              value = value+fac*spv(i2,l2)*c(k2)
 760        continue
            k1 = k1+nv4
 780      continue
c  calculate the squared residual at the current grid point.
          term = term+(z(jz)-value)**2
          jz = jz+mz
          k0 = k0+ncof
 800      continue
c  adjust the different parameters.
          fp = fp+term
          fpu(numu1) = fpu(numu1)+term
          fpv(numv1) = fpv(numv1)+term
          fac = term*half
          if(numv.eq.nroldv) go to 820
          fpv(numv1) = fpv(numv1)-fac
          fpv(numv) = fpv(numv)+fac
 820      nroldv = numv
          if(numu.eq.nroldu) go to 840
          fpu(numu1) = fpu(numu1)-fac
          fpu(numu) = fpu(numu)+fac
 840    continue
        nroldu = numu
 860  continue
      return
      end