1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
subroutine fpgrre(ifsx,ifsy,ifbx,ifby,x,mx,y,my,z,mz,kx,ky,tx,nx,
* ty,ny,p,c,nc,fp,fpx,fpy,mm,mynx,kx1,kx2,ky1,ky2,spx,spy,right,q,
* ax,ay,bx,by,nrx,nry)
c ..
c ..scalar arguments..
real*8 p,fp
integer ifsx,ifsy,ifbx,ifby,mx,my,mz,kx,ky,nx,ny,nc,mm,mynx,
* kx1,kx2,ky1,ky2
c ..array arguments..
real*8 x(mx),y(my),z(mz),tx(nx),ty(ny),c(nc),spx(mx,kx1),spy(my,ky
*1)
* ,right(mm),q(mynx),ax(nx,kx2),bx(nx,kx2),ay(ny,ky2),by(ny,ky2),
* fpx(nx),fpy(ny)
integer nrx(mx),nry(my)
c ..local scalars..
real*8 arg,cos,fac,pinv,piv,sin,term,one,half
integer i,ibandx,ibandy,ic,iq,irot,it,iz,i1,i2,i3,j,k,k1,k2,l,
* l1,l2,ncof,nk1x,nk1y,nrold,nroldx,nroldy,number,numx,numx1,
* numy,numy1,n1
c ..local arrays..
real*8 h(7)
c ..subroutine references..
c fpback,fpbspl,fpgivs,fpdisc,fprota
c ..
c the b-spline coefficients of the smoothing spline are calculated as
c the least-squares solution of the over-determined linear system of
c equations (ay) c (ax)' = q where
c
c | (spx) | | (spy) |
c (ax) = | ---------- | (ay) = | ---------- |
c | (1/p) (bx) | | (1/p) (by) |
c
c | z ' 0 |
c q = | ------ |
c | 0 ' 0 |
c
c with c : the (ny-ky-1) x (nx-kx-1) matrix which contains the
c b-spline coefficients.
c z : the my x mx matrix which contains the function values.
c spx,spy: the mx x (nx-kx-1) and my x (ny-ky-1) observation
c matrices according to the least-squares problems in
c the x- and y-direction.
c bx,by : the (nx-2*kx-1) x (nx-kx-1) and (ny-2*ky-1) x (ny-ky-1)
c matrices which contain the discontinuity jumps of the
c derivatives of the b-splines in the x- and y-direction.
one = 1
half = 0.5
nk1x = nx-kx1
nk1y = ny-ky1
if(p.gt.0.) pinv = one/p
c it depends on the value of the flags ifsx,ifsy,ifbx and ifby and on
c the value of p whether the matrices (spx),(spy),(bx) and (by) still
c must be determined.
if(ifsx.ne.0) go to 50
c calculate the non-zero elements of the matrix (spx) which is the
c observation matrix according to the least-squares spline approximat-
c ion problem in the x-direction.
l = kx1
l1 = kx2
number = 0
do 40 it=1,mx
arg = x(it)
10 if(arg.lt.tx(l1) .or. l.eq.nk1x) go to 20
l = l1
l1 = l+1
number = number+1
go to 10
20 call fpbspl(tx,nx,kx,arg,l,h)
do 30 i=1,kx1
spx(it,i) = h(i)
30 continue
nrx(it) = number
40 continue
ifsx = 1
50 if(ifsy.ne.0) go to 100
c calculate the non-zero elements of the matrix (spy) which is the
c observation matrix according to the least-squares spline approximat-
c ion problem in the y-direction.
l = ky1
l1 = ky2
number = 0
do 90 it=1,my
arg = y(it)
60 if(arg.lt.ty(l1) .or. l.eq.nk1y) go to 70
l = l1
l1 = l+1
number = number+1
go to 60
70 call fpbspl(ty,ny,ky,arg,l,h)
do 80 i=1,ky1
spy(it,i) = h(i)
80 continue
nry(it) = number
90 continue
ifsy = 1
100 if(p.le.0.) go to 120
c calculate the non-zero elements of the matrix (bx).
if(ifbx.ne.0 .or. nx.eq.2*kx1) go to 110
call fpdisc(tx,nx,kx2,bx,nx)
ifbx = 1
c calculate the non-zero elements of the matrix (by).
110 if(ifby.ne.0 .or. ny.eq.2*ky1) go to 120
call fpdisc(ty,ny,ky2,by,ny)
ifby = 1
c reduce the matrix (ax) to upper triangular form (rx) using givens
c rotations. apply the same transformations to the rows of matrix q
c to obtain the my x (nx-kx-1) matrix g.
c store matrix (rx) into (ax) and g into q.
120 l = my*nk1x
c initialization.
do 130 i=1,l
q(i) = 0.
130 continue
do 140 i=1,nk1x
do 140 j=1,kx2
ax(i,j) = 0.
140 continue
l = 0
nrold = 0
c ibandx denotes the bandwidth of the matrices (ax) and (rx).
ibandx = kx1
do 270 it=1,mx
number = nrx(it)
150 if(nrold.eq.number) go to 180
if(p.le.0.) go to 260
ibandx = kx2
c fetch a new row of matrix (bx).
n1 = nrold+1
do 160 j=1,kx2
h(j) = bx(n1,j)*pinv
160 continue
c find the appropriate column of q.
do 170 j=1,my
right(j) = 0.
170 continue
irot = nrold
go to 210
c fetch a new row of matrix (spx).
180 h(ibandx) = 0.
do 190 j=1,kx1
h(j) = spx(it,j)
190 continue
c find the appropriate column of q.
do 200 j=1,my
l = l+1
right(j) = z(l)
200 continue
irot = number
c rotate the new row of matrix (ax) into triangle.
210 do 240 i=1,ibandx
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 240
c calculate the parameters of the givens transformation.
call fpgivs(piv,ax(irot,1),cos,sin)
c apply that transformation to the rows of matrix q.
iq = (irot-1)*my
do 220 j=1,my
iq = iq+1
call fprota(cos,sin,right(j),q(iq))
220 continue
c apply that transformation to the columns of (ax).
if(i.eq.ibandx) go to 250
i2 = 1
i3 = i+1
do 230 j=i3,ibandx
i2 = i2+1
call fprota(cos,sin,h(j),ax(irot,i2))
230 continue
240 continue
250 if(nrold.eq.number) go to 270
260 nrold = nrold+1
go to 150
270 continue
c reduce the matrix (ay) to upper triangular form (ry) using givens
c rotations. apply the same transformations to the columns of matrix g
c to obtain the (ny-ky-1) x (nx-kx-1) matrix h.
c store matrix (ry) into (ay) and h into c.
ncof = nk1x*nk1y
c initialization.
do 280 i=1,ncof
c(i) = 0.
280 continue
do 290 i=1,nk1y
do 290 j=1,ky2
ay(i,j) = 0.
290 continue
nrold = 0
c ibandy denotes the bandwidth of the matrices (ay) and (ry).
ibandy = ky1
do 420 it=1,my
number = nry(it)
300 if(nrold.eq.number) go to 330
if(p.le.0.) go to 410
ibandy = ky2
c fetch a new row of matrix (by).
n1 = nrold+1
do 310 j=1,ky2
h(j) = by(n1,j)*pinv
310 continue
c find the appropiate row of g.
do 320 j=1,nk1x
right(j) = 0.
320 continue
irot = nrold
go to 360
c fetch a new row of matrix (spy)
330 h(ibandy) = 0.
do 340 j=1,ky1
h(j) = spy(it,j)
340 continue
c find the appropiate row of g.
l = it
do 350 j=1,nk1x
right(j) = q(l)
l = l+my
350 continue
irot = number
c rotate the new row of matrix (ay) into triangle.
360 do 390 i=1,ibandy
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 390
c calculate the parameters of the givens transformation.
call fpgivs(piv,ay(irot,1),cos,sin)
c apply that transformation to the colums of matrix g.
ic = irot
do 370 j=1,nk1x
call fprota(cos,sin,right(j),c(ic))
ic = ic+nk1y
370 continue
c apply that transformation to the columns of matrix (ay).
if(i.eq.ibandy) go to 400
i2 = 1
i3 = i+1
do 380 j=i3,ibandy
i2 = i2+1
call fprota(cos,sin,h(j),ay(irot,i2))
380 continue
390 continue
400 if(nrold.eq.number) go to 420
410 nrold = nrold+1
go to 300
420 continue
c backward substitution to obtain the b-spline coefficients as the
c solution of the linear system (ry) c (rx)' = h.
c first step: solve the system (ry) (c1) = h.
k = 1
do 450 i=1,nk1x
call fpback(ay,c(k),nk1y,ibandy,c(k),ny)
k = k+nk1y
450 continue
c second step: solve the system c (rx)' = (c1).
k = 0
do 480 j=1,nk1y
k = k+1
l = k
do 460 i=1,nk1x
right(i) = c(l)
l = l+nk1y
460 continue
call fpback(ax,right,nk1x,ibandx,right,nx)
l = k
do 470 i=1,nk1x
c(l) = right(i)
l = l+nk1y
470 continue
480 continue
c calculate the quantities
c res(i,j) = (z(i,j) - s(x(i),y(j)))**2 , i=1,2,..,mx;j=1,2,..,my
c fp = sumi=1,mx(sumj=1,my(res(i,j)))
c fpx(r) = sum''i(sumj=1,my(res(i,j))) , r=1,2,...,nx-2*kx-1
c tx(r+kx) <= x(i) <= tx(r+kx+1)
c fpy(r) = sumi=1,mx(sum''j(res(i,j))) , r=1,2,...,ny-2*ky-1
c ty(r+ky) <= y(j) <= ty(r+ky+1)
fp = 0.
do 490 i=1,nx
fpx(i) = 0.
490 continue
do 500 i=1,ny
fpy(i) = 0.
500 continue
nk1y = ny-ky1
iz = 0
nroldx = 0
c main loop for the different grid points.
do 550 i1=1,mx
numx = nrx(i1)
numx1 = numx+1
nroldy = 0
do 540 i2=1,my
numy = nry(i2)
numy1 = numy+1
iz = iz+1
c evaluate s(x,y) at the current grid point by making the sum of the
c cross products of the non-zero b-splines at (x,y), multiplied with
c the appropiate b-spline coefficients.
term = 0.
k1 = numx*nk1y+numy
do 520 l1=1,kx1
k2 = k1
fac = spx(i1,l1)
do 510 l2=1,ky1
k2 = k2+1
term = term+fac*spy(i2,l2)*c(k2)
510 continue
k1 = k1+nk1y
520 continue
c calculate the squared residual at the current grid point.
term = (z(iz)-term)**2
c adjust the different parameters.
fp = fp+term
fpx(numx1) = fpx(numx1)+term
fpy(numy1) = fpy(numy1)+term
fac = term*half
if(numy.eq.nroldy) go to 530
fpy(numy1) = fpy(numy1)-fac
fpy(numy) = fpy(numy)+fac
530 nroldy = numy
if(numx.eq.nroldx) go to 540
fpx(numx1) = fpx(numx1)-fac
fpx(numx) = fpx(numx)+fac
540 continue
nroldx = numx
550 continue
return
end
|