File: fpinst.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (77 lines) | stat: -rw-r--r-- 2,019 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
      subroutine fpinst(iopt,t,n,c,k,x,l,tt,nn,cc,nest)
c  given the b-spline representation (knots t(j),j=1,2,...,n, b-spline
c  coefficients c(j),j=1,2,...,n-k-1) of a spline of degree k, fpinst
c  calculates the b-spline representation (knots tt(j),j=1,2,...,nn,
c  b-spline coefficients cc(j),j=1,2,...,nn-k-1) of the same spline if
c  an additional knot is inserted at the point x situated in the inter-
c  val t(l)<=x<t(l+1). iopt denotes whether (iopt.ne.0) or not (iopt=0)
c  the given spline is periodic. in case of a periodic spline at least
c  one of the following conditions must be fulfilled: l>2*k or l<n-2*k.
c
c  ..scalar arguments..
      integer k,n,l,nn,iopt,nest
      real*8 x
c  ..array arguments..
      real*8 t(nest),c(nest),tt(nest),cc(nest)
c  ..local scalars..
      real*8 fac,per,one
      integer i,i1,j,k1,m,mk,nk,nk1,nl,ll
c  ..
      one = 0.1e+01
      k1 = k+1
      nk1 = n-k1
c  the new knots
      ll = l+1
      i = n
      do 10 j=ll,n
         tt(i+1) = t(i)
         i = i-1
  10  continue
      tt(ll) = x
      do 20 j=1,l
         tt(j) = t(j)
  20  continue
c  the new b-spline coefficients
      i = nk1
      do 30 j=l,nk1
         cc(i+1) = c(i)
         i = i-1
  30  continue
      i = l
      do 40 j=1,k
         m = i+k1
         fac = (x-tt(i))/(tt(m)-tt(i))
         i1 = i-1
         cc(i) = fac*c(i)+(one-fac)*c(i1)
         i = i1
  40  continue
      do 50 j=1,i
         cc(j) = c(j)
  50  continue
      nn = n+1
      if(iopt.eq.0) return
c   incorporate the boundary conditions for a periodic spline.
      nk = nn-k
      nl = nk-k1
      per = tt(nk)-tt(k1)
      i = k1
      j = nk
      if(ll.le.nl) go to 70
      do 60 m=1,k
         mk = m+nl
         cc(m) = cc(mk)
         i = i-1
         j = j-1
         tt(i) = tt(j)-per
  60  continue
      return
  70  if(ll.gt.(k1+k)) return
      do 80 m=1,k
         mk = m+nl
         cc(mk) = cc(m)
         i = i+1
         j = j+1
         tt(j) = tt(i)+per
  80  continue
      return
      end