1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
subroutine fpknot(x,m,t,n,fpint,nrdata,nrint,nest,istart)
implicit none
c subroutine fpknot locates an additional knot for a spline of degree
c k and adjusts the corresponding parameters,i.e.
c t : the position of the knots.
c n : the number of knots.
c nrint : the number of knotintervals.
c fpint : the sum of squares of residual right hand sides
c for each knot interval.
c nrdata: the number of data points inside each knot interval.
c istart indicates that the smallest data point at which the new knot
c may be added is x(istart+1)
c ..
c ..scalar arguments..
integer m,n,nrint,nest,istart
c ..array arguments..
real*8 x(m),t(nest),fpint(nest)
integer nrdata(nest)
c ..local scalars..
real*8 an,am,fpmax
integer ihalf,j,jbegin,jj,jk,jpoint,k,maxbeg,maxpt,
* next,nrx,number
c ..
k = (n-nrint-1)/2
c search for knot interval t(number+k) <= x <= t(number+k+1) where
c fpint(number) is maximal on the condition that nrdata(number)
c not equals zero.
fpmax = 0.
jbegin = istart
do 20 j=1,nrint
jpoint = nrdata(j)
if(fpmax.ge.fpint(j) .or. jpoint.eq.0) go to 10
fpmax = fpint(j)
number = j
maxpt = jpoint
maxbeg = jbegin
10 jbegin = jbegin+jpoint+1
20 continue
c let coincide the new knot t(number+k+1) with a data point x(nrx)
c inside the old knot interval t(number+k) <= x <= t(number+k+1).
ihalf = maxpt/2+1
nrx = maxbeg+ihalf
next = number+1
if(next.gt.nrint) go to 40
c adjust the different parameters.
do 30 j=next,nrint
jj = next+nrint-j
fpint(jj+1) = fpint(jj)
nrdata(jj+1) = nrdata(jj)
jk = jj+k
t(jk+1) = t(jk)
30 continue
40 nrdata(number) = ihalf-1
nrdata(next) = maxpt-ihalf
am = maxpt
an = nrdata(number)
fpint(number) = fpmax*an/am
an = nrdata(next)
fpint(next) = fpmax*an/am
jk = next+k
t(jk) = x(nrx)
n = n+1
nrint = nrint+1
return
end
|