File: fpopdi.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (181 lines) | stat: -rw-r--r-- 6,866 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
      subroutine fpopdi(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,z,mz,z0,dz,
     * iopt,ider,tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpu,fpv,
     * nru,nrv,wrk,lwrk)
c  given the set of function values z(i,j) defined on the rectangular
c  grid (u(i),v(j)),i=1,2,...,mu;j=1,2,...,mv, fpopdi determines a
c  smooth bicubic spline approximation with given knots tu(i),i=1,..,nu
c  in the u-direction and tv(j),j=1,2,...,nv in the v-direction. this
c  spline sp(u,v) will be periodic in the variable v and will satisfy
c  the following constraints
c
c     s(tu(1),v) = dz(1) , tv(4) <=v<= tv(nv-3)
c
c  and (if iopt(2) = 1)
c
c     d s(tu(1),v)
c     ------------ =  dz(2)*cos(v)+dz(3)*sin(v) , tv(4) <=v<= tv(nv-3)
c     d u
c
c  and (if iopt(3) = 1)
c
c     s(tu(nu),v)  =  0   tv(4) <=v<= tv(nv-3)
c
c  where the parameters dz(i) correspond to the derivative values g(i,j)
c  as defined in subroutine pogrid.
c
c  the b-spline coefficients of sp(u,v) are determined as the least-
c  squares solution  of an overdetermined linear system which depends
c  on the value of p and on the values dz(i),i=1,2,3. the correspond-
c  ing sum of squared residuals sq is a simple quadratic function in
c  the variables dz(i). these may or may not be provided. the values
c  dz(i) which are not given will be determined so as to minimize the
c  resulting sum of squared residuals sq. in that case the user must
c  provide some initial guess dz(i) and some estimate (dz(i)-step,
c  dz(i)+step) of the range of possible values for these latter.
c
c  sp(u,v) also depends on the parameter p (p>0) in such a way that
c    - if p tends to infinity, sp(u,v) becomes the least-squares spline
c      with given knots, satisfying the constraints.
c    - if p tends to zero, sp(u,v) becomes the least-squares polynomial,
c      satisfying the constraints.
c    - the function  f(p)=sumi=1,mu(sumj=1,mv((z(i,j)-sp(u(i),v(j)))**2)
c      is continuous and strictly decreasing for p>0.
c
c  ..scalar arguments..
      integer ifsu,ifsv,ifbu,ifbv,mu,mv,mz,nu,nv,nuest,nvest,
     * nc,lwrk
      real*8 z0,p,step,fp
c  ..array arguments..
      integer ider(2),nru(mu),nrv(mv),iopt(3)
      real*8 u(mu),v(mv),z(mz),dz(3),tu(nu),tv(nv),c(nc),fpu(nu),fpv(nv)
     *,
     * wrk(lwrk)
c  ..local scalars..
      real*8 res,sq,sqq,step1,step2,three
      integer i,id0,iop0,iop1,i1,j,l,laa,lau,lav1,lav2,lbb,lbu,lbv,
     * lcc,lcs,lq,lri,lsu,lsv,l1,l2,mm,mvnu,number
c  ..local arrays..
      integer nr(3)
      real*8 delta(3),dzz(3),sum(3),a(6,6),g(6)
c  ..function references..
      integer max0
c  ..subroutine references..
c    fpgrdi,fpsysy
c  ..
c  set constant
      three = 3
c  we partition the working space
      lsu = 1
      lsv = lsu+4*mu
      lri = lsv+4*mv
      mm = max0(nuest,mv+nvest)
      lq = lri+mm
      mvnu = nuest*(mv+nvest-8)
      lau = lq+mvnu
      lav1 = lau+5*nuest
      lav2 = lav1+6*nvest
      lbu = lav2+4*nvest
      lbv = lbu+5*nuest
      laa = lbv+5*nvest
      lbb = laa+2*mv
      lcc = lbb+2*nvest
      lcs = lcc+nvest
c  we calculate the smoothing spline sp(u,v) according to the input
c  values dz(i),i=1,2,3.
      iop0 = iopt(2)
      iop1 = iopt(3)
      call fpgrdi(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,z,mz,dz,
     * iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu,
     * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
     * wrk(lav2),wrk(lbu),wrk(lbv),wrk(laa),wrk(lbb),
     * wrk(lcc),wrk(lcs),nru,nrv)
      id0 = ider(1)
      if(id0.ne.0) go to 5
      res = (z0-dz(1))**2
      fp = fp+res
      sq = sq+res
c in case all derivative values dz(i) are given (step<=0) or in case
c we have spline interpolation, we accept this spline as a solution.
  5   if(step.le.0. .or. sq.le.0.) return
      dzz(1) = dz(1)
      dzz(2) = dz(2)
      dzz(3) = dz(3)
c number denotes the number of derivative values dz(i) that still must
c be optimized. let us denote these parameters by g(j),j=1,...,number.
      number = 0
      if(id0.gt.0) go to 10
      number = 1
      nr(1) = 1
      delta(1) = step
  10  if(iop0.eq.0) go to 20
      if(ider(2).ne.0) go to 20
      step2 = step*three/tu(5)
      nr(number+1) = 2
      nr(number+2) = 3
      delta(number+1) = step2
      delta(number+2) = step2
      number = number+2
  20  if(number.eq.0) return
c the sum of squared residuals sq is a quadratic polynomial in the
c parameters g(j). we determine the unknown coefficients of this
c polymomial by calculating (number+1)*(number+2)/2 different splines
c according to specific values for g(j).
      do 30 i=1,number
         l = nr(i)
         step1 = delta(i)
         dzz(l) = dz(l)+step1
         call fpgrdi(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,z,mz,dzz,
     *    iop0,iop1,tu,nu,tv,nv,p,c,nc,sum(i),fp,fpu,fpv,mm,mvnu,
     *    wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
     *    wrk(lav2),wrk(lbu),wrk(lbv),wrk(laa),wrk(lbb),
     *    wrk(lcc),wrk(lcs),nru,nrv)
         if(id0.eq.0) sum(i) = sum(i)+(z0-dzz(1))**2
         dzz(l) = dz(l)-step1
         call fpgrdi(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,z,mz,dzz,
     *    iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu,
     *    wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
     *    wrk(lav2),wrk(lbu),wrk(lbv),wrk(laa),wrk(lbb),
     *    wrk(lcc),wrk(lcs),nru,nrv)
         if(id0.eq.0) sqq = sqq+(z0-dzz(1))**2
         a(i,i) = (sum(i)+sqq-sq-sq)/step1**2
         if(a(i,i).le.0.) go to 80
         g(i) = (sqq-sum(i))/(step1+step1)
         dzz(l) = dz(l)
  30  continue
      if(number.eq.1) go to 60
      do 50 i=2,number
         l1 = nr(i)
         step1 = delta(i)
         dzz(l1) = dz(l1)+step1
         i1 = i-1
         do 40 j=1,i1
            l2 = nr(j)
            step2 = delta(j)
            dzz(l2) = dz(l2)+step2
            call fpgrdi(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,z,mz,dzz,
     *       iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu,
     *       wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
     *       wrk(lav2),wrk(lbu),wrk(lbv),wrk(laa),wrk(lbb),
     *       wrk(lcc),wrk(lcs),nru,nrv)
            if(id0.eq.0) sqq = sqq+(z0-dzz(1))**2
            a(i,j) = (sq+sqq-sum(i)-sum(j))/(step1*step2)
            dzz(l2) = dz(l2)
  40     continue
         dzz(l1) = dz(l1)
  50  continue
c the optimal values g(j) are found as the solution of the system
c d (sq) / d (g(j)) = 0 , j=1,...,number.
  60  call fpsysy(a,number,g)
      do 70 i=1,number
         l = nr(i)
         dz(l) = dz(l)+g(i)
  70  continue
c we determine the spline sp(u,v) according to the optimal values g(j).
  80  call fpgrdi(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,z,mz,dz,
     * iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu,
     * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
     * wrk(lav2),wrk(lbu),wrk(lbv),wrk(laa),wrk(lbb),
     * wrk(lcc),wrk(lcs),nru,nrv)
      if(id0.eq.0) fp = fp+(z0-dz(1))**2
      return
      end